A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors

Posted on March 12, 2021

Overview

Using sensor data to estimate various human gait parameters, for example walking speed, ramp incline, etc.

Abstract

The accurate classification of ambulation modes and estimation of walking parameters is a challenging problem that is key to many applications. Knowledge of the user’s state can enable rehabilitative devices to adapt to changing conditions, while in a clinical setting it can provide physicians with more detailed patient activity information. This study describes the development and optimization process of a combined locomotion mode classifier and environmental parameter estimator using machine learning and wearable sensors. A detailed analysis of the best sensor types and placements for each problem is also presented to provide device designers with information on which sensors to prioritize for their application. For this study, 15 able-bodied subjects were unilaterally instrumented with inertial measurement unit, goniometer, and electromyography sensors and data were collected for extensive ranges of level-ground, ramp, and stair walking conditions. The proposed system classifies steady state ambulation modes with 99% accuracy and ambulation mode transitions with 96% accuracy, along with estimating ramp incline within 1.25 degrees, stair height within 1.29 centimeters, and walking speed within 0.04 meters per second. Mechanical sensors (inertial measurement units, goniometers) are found to be most important for classification, while goniometers dominate ramp incline and stair height estimation, and speed estimation is performed largely with a single inertial measurement unit. The feature tables and Matlab code to replicate the study are published as supplemental materials.

Paper