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Abstract— Functional autonomous systems often realize com-
plex tasks by utilizing state machines comprised of discrete
primitive behaviors and transitions between these behaviors.
This architecture has been widely studied in the context
of quasi-static and dynamics-independent systems. However,
applications of this concept to dynamical systems are rela-
tively sparse, despite extensive research on individual dynamic
primitive behaviors, which we refer to as “motion primitives.”
This paper formalizes a process to determine dynamic-state
aware conditions for transitions between motion primitives
in the context of safety. The result is framed as a “motion
primitive graph” that can be traversed by standard graph
search and planning algorithms to realize functional autonomy.
To demonstrate this framework, dynamic motion primitives—
including standing up, walking, and jumping—and the transi-
tions between these behaviors are experimentally realized on a
quadrupedal robot.

I. INTRODUCTION

There is a significant volume of literature, applications,
and demonstrations of functional autonomous systems that
perform a wide range of complex tasks, ranging from
the unstructured environment of disaster-response motivated
DARPA Robotics Challenge [1] to the highly structured
environment of industrial manufacturing robotics [2]. These
systems often use sequence-based [3], [4], state-machine
based [5], or graph-based [6] autonomy to couple many
discrete behaviors together to complete highly complex
tasks. These applications are typically quasi-static or have
dynamics which are self-contained within each primitive
behavior; thus, task-level or pose states can be used to
determine if transitions are safe, while dynamic states are
not considered. If one intends to extend this concept to
dynamic systems and transitions, then the dynamic nature
of the primitive behaviors and the transitions between them
must be considered explicitly. This observation motivates the
desire to determine safe transitions between what are referred
to as “motion primitives” [7], [8], [9].

There is a wealth of prior work on motion primitives,
examples of which include walking, running and jumping
for legged robotics [10], [11], lane-following, cruise control
and parallel parking for wheeled vehicles [12], and hovering
and landing for quadrotor applications [13]. It is important
to note that there exist many different methods to realize a
given behavior, with varying advantages and disadvantages in
the aspects of safety, performance, robustness to uncertainty,
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Fig. 1: A depiction of the motion primitive graph and the
Unitree A1 executing the graph dynamically.

etc. Certain methods for generating motion primitives may be
more or less conducive for use in our proposed framework.
Rather than focus on specific approaches, the goal of this
paper is to detail a general framework for studying motion
primitives and transitions that is verifiable and, importantly,
realizable on dynamic legged robotic systems.

Of special interest in this work are transitions between
dynamic motion primitives. For these primitives, transi-
tioning requires convergence to the next primitive while
maintaining safety, and can be studied through the notions
of stability and regions of attraction. There are a number of
effective techniques to estimate regions of attraction, includ-
ing backward reachability methods [14], optimization-based
Lyapunov methods [15], [16], [17], quadratic Lyapunov
methods [18] and linearization methods [19]. Additionally,
Control Lyapunov Function and Control Barrier Function-
based motion primitives [20] can also be used to enforce
both stability and safety explicitly. In this paper, we leverage
these ideas to verify safe transitions.

The main result of this paper is a formalization of dynamic
motion primitives and transition types between them, and
a method to verify the availability of transitions between
arbitrary primitives. This leads to the construction of a “mo-
tion primitive graph” that can be utilized via standard graph
search algorithms to provide a certifiably-safe transition path
between the execution of motion primitives; see Figure 1.
This method was applied to a set of quadrupedal motion
primitives and validated through hardware experiments on
a Unitree A1 quadruped. The results demonstrate successful
and safe execution of a complex sequence of desired dynamic
behaviors, e.g., walking and jumping, and a comparison with
naı̈ve transitioning highlights the contributions of this work.
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II. PRELIMINARIES

Consider a nonlinear system in control affine form:

ẋ = f(x) + g(x)u

where x ∈ X ⊂ Rn is the state of the system, u ∈ U ⊂ Rm

represents the control inputs, and the functions f : X → Rn

and g : X → Rn×m are assumed to be locally Lipschitz
continuous. Under the application of a locally Lipschitz
continuous feedback control law u = k(x, t), we get the
closed loop dynamics:

ẋ = fcl(x, t) = f(x) + g(x)k(x, t). (1)

For these dynamics, the solution to the initial value problem
with x(0) = x0 is termed the flow of the system and is
denoted as ϕt(x0). The flow exists for all t ≥ 0 if we further
assume that X and U are compact.

In the following constructions, we describe the closed-
loop behavior ϕt(x0) by the help of motion primitives. While
motion primitives are not a novel concept [7], [8], [9], we
introduce our own definition that facilitates the construction
of motion primitive graphs for use in planning and autonomy.

Definition 1. A motion primitive is a dynamic behavior
of (1) defined by the 6-tuple P = (x∗, k,Ω, C,S, E) with
the following attributes.

• The setpoint, x∗ : R → X , that describes the desired
state as a function of time by x∗(t). It satisfies (1) and
hence x∗(t+ t0) = ϕt(x

∗(t0)), ∀t ≥ 0, t0 ∈ R. It may
be executed with a selected initial time t0.

• The control law, k : X × R → U , that determines the
control input u = k(x, t). It is assumed to render the
setpoint locally asymptotically stable.

• The region of attraction (RoA) of the setpoint,
Ω : R → X , given by Ω(t0) ⊆ X :

Ω(t0) = {x0 ∈ X : lim
t→∞

ϕt(x0)−x∗(t+t0) = 0}. (2)

• The safe set, C : R → X , that indicates the states of safe
operation by the set C(t) ⊂ X . It is assumed to be the
0-superlevel set of a function h : X × R → R:

C(t) = {x ∈ X : h(x, t) ≥ 0},

such that x∗(t+ t0) ∈ C(t), ∀t ≥ 0, t0 ∈ R.
• The implicit safe region of attraction, S : R → X , that

defines the set of points from which the flow converges
to the setpoint while being safe for all time:

S(t0) = {x0 ∈ Ω(t0) : ϕt(x0) ∈ C(t),∀t ≥ 0}. (3)

This set is non-empty as x∗(t0) ∈ S(t0). In general, it
is difficult to compute this set, thereby the term implicit.

• The explicit safe region of attraction, E : R → X . Be-
cause finding S(t0) is difficult, we consider a smaller,
known subset E(t0) ⊆ S(t0) with x∗(t0) ∈ E(t0),
∀t0 ∈ R.

TABLE I: Motion Primitive Classes

Name Setpoint Safe RoA Indicator
Fixed x∗(t) = x∗ S(t) = S

Periodic x∗(t) = x∗(t+ T ) S(t) = S(t+ T )

Transient x∗(t), t ∈ [t0, tf ] S(t), t ∈ [t0, tf ]

A. Motion Primitive Classes

We consider three classes of motion primitives, fixed,
periodic and transient, given by the examples below.

Example 1. A fixed motion primitive is a behavior where
the setpoint and safe RoA are constant in time: x∗(t) = x∗,
S(t) = S, ∀t ≥ 0. Examples in this class include stand and
sit behaviors for a legged robots, hover in place for a multi-
rotor, and hold position behavior for a robotic manipulator.

Example 2. A periodic motion primitive is a behavior
where the setpoint and safe RoA are periodic in time:
x∗(t) = x∗(t+ Tp), S(t) = S(t+ Tp), with period Tp > 0.
Examples of this class are walking or running for legged
robotics and repeated motions for pick-and-place robotics.

Example 3. A transient motion primitive is a behavior
where the setpoint and safe RoA are functions of time on a
finite domain: x∗(t), S(t), t ∈ [t0, tf ]. Jumping and landing
behaviors on legged platforms and tracking path-planned
trajectories are examples of transient motion primitives.

These motion primitive classes are summarized in Table I.
For each class indicators will be used for visualization in
motion primitive graphs: box denotes fixed, circle represents
periodic and diamond indicates transient motion primitives.

B. Motion Primitive Transitions

Having defined motion primitives, we investigate the tran-
sitions between them. Let us consider motion primitives
A,B ∈ P , a time moment tA ∈ R≥0, the setpoint x∗

A of
A and the controller kB of B.

Definition 2. The flow ϕB
t (x

∗
A(tA)) under controller kB

starting from x∗
A(tA) is called a transition TAB from A to

B starting at time tA, if ∃tB ∈ R s.t. x∗
A(tA) ∈ SB(tB).

To achieve a transition from A to B, the control law kB of
primitive B can be applied starting from tA by selecting the
appropriate tB . The transition is safe by construction, since
the definition of SB implies ϕB

t (x
∗
A(tA)) ∈ C(t), ∀t ≥ tA.

If tB exists for all tA ≥ 0, the transition can be initiated
at anytime from primitive A. We call this case as Class 1
transition. Otherwise, transition can only be initiated at some
specific times tA, which is called Class 2 transition. Class
1 and Class 2 transitions will be represented by solid and
dashed edges in the motion primitive graph, respectively.
If a transition does not exist between two primitives, then
the control law kB may not guarantee a safe transition
and no edge will exist in the motion primitive graph. In
what follows, we reduce the problem of transitioning safely
to verifying the existence of Class 1 or 2 transitions and
switching from the controller of primitive A to that of B at
the right moment of time.



Stand Walk

(a) Original incomplete graph, no transition

Stand Step Walk

(b) Periodic Step-in-Place intermediate primitive

Stand Accelerate Walk

(c) Transient Acceleration intermediate primitive
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Fig. 2: Examples for mending an incomplete graph between
Stand and Walk motion primitives.

C. Motion Primitive Graph

Information about motion primitives and transitions be-
tween them can be organized into motion primitive graphs.

Definition 3. A motion primitive graph G is a directed
graph whose nodes are fixed, periodic or transient motion
primitives and edges are Class 1 or Class 2 transitions. The
motion primitive graph consists of N motion primitive nodes
{P1, . . . ,PN} with transitions Tij potentially connecting
node Pi to node Pj for i, j ∈ {1, . . . , N}.

An example of a motion primitive graph can be seen in
Figure 1. In general, there are no guarantees that a graph
from an arbitrary set of primitives is connected, although
it is a necessity for each primitive to be reachable. While
ensuring a collection of motion primitives forms a connected
graph is outside the scope of this paper, we posit this can be
done by the modification of existing nodes or introduction
of intermediate nodes. This is illustrated in Figure 2 with
an example using Stand and Walk primitives for a legged
robotic system. Initially, we have no transition between the
Stand and Walk primitives, perhaps due to the violation of
a no-slip safety constraint. Examples to make this graph
connected include: the introduction of a periodic Step-in-
Place primitive, the introduction of a transient Accelerate
primitive, and modifying the Walk primitive to respect the
no-slip safety constraint. While this is a significant topic in
its own right, we will not investigate this further in this
paper and we make the assumption the given nodes form
a connected graph.

III. CONSTRUCTING THE MOTION PRIMITIVE GRAPH

We now turn to the major contribution of this paper:
verifying the existence of safe transitions between motion
primitives. For the subsequent analysis, consider prior prim-
itive A and posterior primitive B.

A. Transitions via Safety Oracle

Clearly, the goal is to determine if a transition exists from
A to B based on the condition x∗

A(tA) ∈ SB(tB) in Defini-
tion 2. The setpoint x∗

A(t) is known from the construction
of motion primitive A, and if we have a formulation for
the safe RoA SB(t), the desired result follows. Note that
the safe set CB(t) is designer-prescribed and known, and the
remaining component of SB(t) is the region of attraction.
Because determining the RoA explicitly is difficult, if not
impossible, for general systems and primitives we require
an alternative method to determine if a transition exists. We
make two observations:

1) We do not necessarily need an explicit formulation for
SB(t) to determine if x∗

A(tA) ∈ SB(tB).
2) There is at least one point we know is in SB(t): x∗

B(t).
From observation 2, we hypothesize that there exists a
neighborhood EB(t) of x∗

B(t), called explicit safe region of
attraction (see Definition 1), that is a subset of SB(t) and is
tractable to compute. This can be constructed based on the
safe set and a conservative estimate of the RoA. For example,
if the control law kB renders x∗

B exponentially stable, the
converse Lyapunov theorem can be used to estimate the RoA
via a norm bound. The existence of the explicit safe RoA
EB(t) combined with observation 1 leads to the idea of the
safety oracle.

Definition 4. For motion primitive P , a safety oracle with
horizon T > 0 is a map O : X × R → {0, 1} defined by:

O(x0, t0) =


1 if ϕt(x0) ∈ C(t), ∀t ∈ [0, T ],

and ϕT (x0) ∈ E(t0 + T ),

0 otherwise.

This definition reduces the verification of safe transitions
to the evaluation of the safety oracle O as follows.

Theorem 1. If ∃tB ∈ R such that OB(x
∗
A(tA), tB) = 1,

then there exists a transition TAB starting at tA from motion
primitive A to motion primitive B.

Proof. By definition, OB(x
∗
A(tA), tB) = 1 implies

ϕB
t (x

∗
A(tA)) ∈ CB(t), ∀t ∈ [0, T ],

ϕB
T (x

∗
A(tA)) ∈ EB(tB + T ) ⊆ SB(tB + T ),

(4)

where EB is a subset of SB by construction. By the defini-
tion (3) of SB , the second line of (4) implies

ϕB
t (x

∗
A(tA)) ∈ CB(t), ∀t ≥ T (5)

and

lim
θ→∞

ϕB
θ

(
ϕB
T (x

∗
A(tA))

)
− x∗

B(θ + T + tB) = 0.

Since ϕB
θ

(
ϕB
T (x

∗
A(tA))

)
= ϕB

θ+T (x
∗
A(tA)), a change of

coordinates t = θ + T leads to form (2) and gives
x∗
A(tA) ∈ ΩB(tB). With the first line of (4) and (5), this

leads to x∗
A(tA) ∈ SB(tB), which proves the existence of

transition TAB . ■



Fig. 3: Illustration of the relationship of motion primitives
A and B by the setpoints x∗

A and x∗
B , flow ϕt(x

∗
A), region

of attraction ΩB , safe set CB , implicit safe RoA SB , and
explicit safe RoA EB .

Theorem 1 provides a practical way of verifying the exis-
tence of transitions: one needs to evaluate OB(x

∗
A(tA), tB)

for various tB values. When evaluating OB , the flow
ϕt(x

∗
A(tA)) over t ∈ [0, T ] can be computed by numerical

simulation of (1) which can be terminated if the flow enters
EB . This is illustrated in Figure 3. While the method is
computationally tractable for finite T , it is conservative in
the sense that Theorem 1 involves a sufficient condition
and OB(x

∗
A(tA), tB) = 0 does not necessarily rule out the

existence of a transition. However, this conservativeness
becomes negligible if T is large enough, since the flow from
all points of SB eventually enter EB .

B. Constructing the Graph

Up until this point, we referred to motion primitives with
distinct setpoints x∗(t) and safe regions of attraction S(t).
In practice, these may depend on certain parameters; dy-
namic behaviors may take a range of continuous or discrete
arguments, such as walking speed or body orientation while
standing in the case of legged robots. To support this with
our framework, we quantize the argument space of behaviors,
and treat each quanta as a unique motion primitive when
constructing the motion primitive graph.

For each ordered pair of primitive, A to B, we can then
apply the safety oracle with respect to a discretization of time
for primitive A. The flow in the safety oracle is computed
via numerical integration of the system under kB for a
parameterized time T . If the safety oracle returns True for all
times in the discretization, we add a Class 1 transition to the
graph from A to B. If it returns True for only some times,
we add a Class 2 transition to the graph. If the safety oracle
never returns True, then no transition is added. Details can be
found in Algorithm 1. It is important to note that this process
can be done offline—in fact, this procedure only needs to be
repeated if the dynamic model changes, existing primitives
are modified, or new primitives are added. In the latter two
cases, only a subset of motion primitive pairs needs to be
rechecked for transitions. This results in a tractable procedure
for constructing the motion primitive graph.

Algorithm 1 BuildMotionPrimitiveGraph
1: function BUILDMOTIONPRIMITIVEGRAPH(P ,T)
2: T = ∅ ▷ T List of edges for motion primitive graph G
3: for A,B ∈ P do
4: set TAB = ∅ ▷ Assume no transition exists
5: set SO(·, ·) = False ▷ Safety Oracle responses
6: for (tA, tB) ∈ [t0A, tfA]× [t0B , tfB ] do
7: set SO(tA, tB) =SAFETYORACLE(fcl,B(tB), x

∗
A, . . .

EB(tB), CB(tB), T )
8: end for
9: if any(SO(·, ·) = True) then

10: set TAB = Class 2
11: end if
12: if ∀ tA any(SO(tA, ·) = True) then
13: set TAB = Class 1
14: end if
15: ADDEDGE(T , TAB)
16: end for
17: return G = (P, T )
18: end function

19: function SAFETYORACLE(fcl, x∗, E , C, T )
20: t = 0
21: while t < T do
22: ϕt(x

∗) = INTEGRATE(fcl(x∗))
23: if ϕt(x

∗) ∈ E then
24: return True
25: end if
26: if ϕt(x

∗) /∈ C then
27: return False
28: end if
29: end while
30: return False
31: end function

IV. APPLICATION TO QUADRUPEDS

The proposed concepts are applied to the Unitree A1
quadrupedal robot, shown in Figure 1, with a small set
of motion primitives. In this setting, we define the local
configuration space coordinates as q ∈ Q ⊂ Rn with the
full state space given by x = (q, q̇) ∈ X = TQ ⊂ R2n; in
the case of the Unitree A1, n = 18. The control input is given
by u ∈ U ⊂ Rm, with m = 12 actuators for the A1. During
walking, the no slip condition of the feet is enforced via
holonomic constraints, encoded by c(q) ≡ 0 for c(q) ∈ Rnc ,
where nc depends on the number of feet in contact with the
ground. Differentiating c(q) twice, D’Alembert’s principle
applied to the constrained Euler-Lagrange equations gives:

D(q)q̈ +H(q, q̇) = Bu+ J(q)⊤λ,

J(q)q̈ + J̇(q, q̇)q̇ = 0,

where D(q) ∈ Rn×n is the mass-inertia matrix, H(q, q̇) ∈
Rn contains the Coriolis and gravity terms, B ∈ Rn×m is the
actuation matrix, J(q) = ∂c(q)/∂q ∈ Rnc×n is the Jacobian
of the holonomic constraints, and λ ∈ Rnc is the constraint
wrench. This can be converted to control affine form:

ẋ =

[
q̇

−D(q)−1(H(q, q̇)− J(q)⊤λ)

]
︸ ︷︷ ︸

f(x)

+

[
0

D(q)−1B

]
︸ ︷︷ ︸

g(x)

u,



where the mappings f : X → Rn and g : X → Rn×m are
assumed to be locally Lipschitz continuous. In the case of
legged locomotion, the alternating sequences of continuous
and discrete dynamics are captured within the hybrid dy-
namics framework. For the sake of simplicity, and because
only the continuous dynamics are considered in the controller
design process, this development will be omitted; please refer
to [10] for more details. Finally, the outputs being driven to
zero by the controllers in each respective motion primitive
can be represented as:

y(x, t) = ya(x)− yd(t),

where the actual measured state ya : X → Ro and the desired
state yd : R → Ro are smooth functions.

A. Quadruped Motion Primitives Preliminaries

Recall that our framework is agnostic to the implementa-
tion details of the primitives themselves, granted the assump-
tions in Section II are met. Nevertheless, the implementation
details, along with the computable components of the motion
primitive tuple, (x∗, k, C, E) ⊂ P , are elucidated for each
primitive in our application. We begin by defining some
common attributes.

Common Safe Sets. For all primitives, the safety functions
employed on hardware include joint position and velocity
limits, whereby a combined safe set can be constructed as:

Cq,q̇ = {x ∈ X : hqmin
(x) = q − qmin ≥ 0,

hqmax
(x) = qmax − q ≥ 0,

hq̇min
(x) = q̇ − q̇min ≥ 0,

hq̇max
(x) = q̇max − q̇ ≥ 0}.

Additionally, many primitives require immobile ground con-
tact with all feet for safety. Assuming a flat ground at z = 0,
this can be captured by safety functions:

Cground = {x ∈ Cq,q̇ : hg1(x) = −fkz(q) ≥ 0,

hg2(x) = −J(q)q̇ = 0},

where fkz : Q → R4 is the z-component of the forward
kinematics of the feet of the quadruped.

Common Explicit Safe Regions of Attraction. As dis-
cussed in Section III-A, we can choose a conservative safe
RoA estimate E and compensate with an increased integra-
tion horizon T. For all the primitives in the experiment, we
take a conservative norm bound about x∗(t):

E(t) = {x ∈ X : ||x− x∗(t)|| < r},

where the value of r is determined empirically for each
primitive.

Motion Profiling. Where indicated, motion primitives utilize
cubic polynomial motion profiling over a fixed duration

Θ > 0. This is computed via linear matrix equation:
c0

c1

c2

c3

 =


1 0 0 0

1 Θ Θ2 Θ3

0 1 0 0

0 1 2Θ2 3Θ2


−1 

q0

qf

q̇0

q̇f

 ,

where x∗
A = (q0, q̇0) and x∗

B = (qf , q̇f). Taking the desired
state as yd(t) = (qd(t), q̇d(t)), we have the polynomial:

yd(t) =


(q0, q̇0) if t < 0,

(c0 + c1t+ c2t
2 + c3t

3,

c1 + 2c2t+ 3c3t
)

if t ∈ [0,Θ],

(qf , q̇f) if t > Θ.

(6)

B. Quadruped Motion Primitives

We considered the motion primitives listed below:

Lie. The Lie is a fixed motion primitive that rests the
quadruped on the ground with the legs in a prescribed posi-
tion. The feedback controller is a joint-space PD controller:

k(x, t) = −KP y(x, t)−KDẏ(x, t), (7)

where yd(x, t) is the previously explained cubic spline in (6)
from the pose when the primitive is first applied to the Lie
goal pose, x∗

Lie. The safe set for Lie requires ground contact
from all four feet: CLie = Cground.

Stand. For the Stand fixed motion primitive, x∗
Stand pre-

scribes the body to be at a specified height above the ground
and the center of mass to lie above the centroid of the
support polygon. Taking Xext = [q̈⊤, u⊤, λ⊤]⊤ ∈ Xext =
R18 × R12 × Rnc , this is done via an Inverse-Dynamics
Quadratic Program based controller (ID-QP):

ID-QP:
Xext

∗ = argmin
Xext∈Xext

∥Jy(q, q̇)q̈ + J̇y(q, q̇)q̇ − τ(x, t)∥2 + σW (X )

s.t. D(q)q̈ +H(q, q̇) = Bu+ J(q)⊤λ

J(q)q̈ + J̇(q, q̇)q̇ = 0

u ∈ U
λ ∈ FC(x)

where U = [−33.5, 33.5]12 is limited by the available
torque at each motor, σ and W are regularization terms for
numerical stability of the QP, and FC(x) ∈ Rnc is a friction
cone condition to enforce no slipping of the feet. The motion
profile (6) in center of mass task-space is used with a PD
control law to produce τ(x, t) in the objective function:

τ(x, t) = KP y(x, t) +KDẏ(x, t).

Finally, k(x, t) = u∗. We have the safe set: CStand = Cground.

Walk. The Walk periodic motion primitive locomotes the
quadruped forward by tracking a stable walking gait. Stable
walking gaits were generated using a biped-decomposition



Stand

Lie
Walk

(in place)

Walk
(slow)

Walk
(medium)

Walk
(fast)

Land

Jump

Fig. 4: Computed motion primitive graph for the experimen-
tal set of quadruped motion primitives.

technique as described in [21] and combined in a gait library,
[22]. Specifically, the desired output is written as:

x∗(t) = (x∗
B(t),Rx∗

B(t)),

where x∗
B(t) is the desired behavior generated by the NLP

toolbox FROST [23] for one biped, and R ∈ Ro×o is a
mirroring matrix relating the behavior of the two subsystems.
The gaits are tracked using the joint-space PD control law
in (7). This primitive can be called with an argument to con-
trol forward speed, specifically: Walk(in place), Walk(slow),
Walk(medium) and Walk(fast). Any slipping of stance feet
is deemed unsafe, which is described by the safety function:

hi(x) =

−J i
xy(q)q̇ if fkiz(q) ≤ 0,

0 otherwise,

CWalk = {x ∈ Cq,q̇ : hi(x) = 0, i ∈ F},

where fkiz(q) : Q → R is the forward kinematics z-
component, J i

xy(q) : Q → R2×n is the x, y-components
of the Jacobian for each foot, and F ⊂ {1, ..., 4} is an index
set of feet in ground contact.

Jump. The transient Jump primitive is a four-legged vertical
jump, performed by task-space tracking of x∗

Jump, a pre-
scribed center of mass trajectory to reach a specified takeoff
velocity. The trajectory is generated via (6) and does not take
constraints (input or otherwise) into account. The trajectory
is tracked via a task-space PD control law:

k(x, t) = Jy(x)
⊤(−KP y(x, t)−KDẏ(x, t)

)
,

where Jy : X → Ro×m is the Jacobian of the outputs. Like
other transient primitives, this requires a “next primitive”
argument. For the purpose of this experiment, the next
primitive will always be Land. To be in the safe set, the
Jump primitive requires all feet to be in contact at t = 0,

Fig. 5: Depiction of the transition from Lie to Stand to
Walk(in place) during the hardware experiments. The inclu-
sion of x∗

Stand in the approximate SWalk can be seen, and
upon switching to the controller for the walk primitive, the
flow of the system eventually reaches EWalk.

and no feet to be in contact after prescribed takeoff time.
For the aerial phase, we define:

Caerial = {x ∈ Cq,q̇ : h(x) = fkz(q) ≥ 0}.

The composite safe set is then:

CJump(t) =


Cground if t < Tt,

Cq,q̇ if Tt ≤ t < Tt + ϵ,

Caerial if Tt + ϵ ≤ t < Tf ,

where Tt and Tf are the takeoff time and final time prescribed
by the trajectory, and ϵ > 0 allows for non-simultaneous
contact in the safe set.

Land. The Land primitive is a high-damping joint-space
PD control law, as in (7), about a crouched pose, x∗

Land, to
cushion the quad as the legs make contact with the ground
from an airborne state. In this experiment, the next primitive
will always be Stand. The safe set for Land requires all feet
to not be in contact at t = 0 and all feet to reach contact
within a small time window after initial ground contact:

CLand(t) =


Caerial if t < Tc,

Cq,q̇ if Tc ≤ t < Tc + ϵ,

Cground if Tc + ϵ ≤ t,

where Tc is the time of first ground contact.

C. Implementation and Experimental Results

Each individual primitive was implemented as a C++
module with function calls for the computable portions of the
motion primitive tuple, (x∗, k, C, E) ⊂ P . A C++ implemen-
tation of Algorithm 1 was applied, utilizing the Pinocchio
Rigid Body dynamics library [24] and Boost’s odeint with
a runge kutta cash karp54 integration scheme [25].
Note that in the construction of the motion primitive graph,
the hybrid nature of the system was taken into account.



Fig. 6: Motion primitive graph traversal for a sample sequence of desired primitives on quadrupedal system. Top: Gait tiles
comparing the proposed method to a naı̈ve method, which results in a violation of safety. Bottom: center of mass height
and orientation comparison between naı̈ve transitions and the proposed graph-traversal transitions. Blocks under the upper
plot show desired behavior and vertical lines with corresponding text indicate the mode used by the proposed method. Note
the substantial drift and ultimate failure when using the naı̈ve transitions.

The resulting motion primitive graph is visualized in Fig-
ure 4. The graph shows that we can freely transition from Lie
to Stand, but must go through Walk(in place) before reaching
other walk speeds. Additionally, the Class 2 transitions from
the Walk states indicates the time-dependent nature of the
transition: we can only leave the Walk primitive at certain
times in the orbit. Using the motion primitive graph, offline
depth-first search was used to compute the path from each
known current primitive to a desired motion primitive. The
solutions were implemented as an online lookup table.

To validate the method experimentally, a sequence of
goal primitives was built to exercise the different transition
types in the quadruped example. The sequence is shown

TABLE II: Test Sequence of Goal Motion Primitives

Time 0 s 3 s 8 s 11 s 16 s
Goal
Primitive Lie Walk(fast) Jump Walk(fast) Lie

Inter.
Primitives —

Lie
Stand
Walk(in place)
Walk(slow)
Walk(medium)
Walk(fast)

Walk(fast)
Walk(medium)
Walk(slow)
Walk(in place)
Stand
Jump

Jump
Land
Stand
Walk(in place)
Walk(slow)
Walk(medium)
Walk(fast)

Walk(fast)
Walk(medium)
Walk(slow)
Walk(in place)
Lie

in Table II. Each desired primitive in the sequence was
commanded at the listed time. Two cases were run with the
sequence: the first with naı̈ve, immediate application of the
goal motion primitive, and the second with our proposed
traversal algorithm executing intermediate motion primitives
based on the motion primitive graph.

With the proposed traversal algorithm executing interme-
diate primitives, we see the transition from Lie to Walk(fast)
first traverses through Stand, then Walk(in place) and other
walk speeds until finally reaching Walk(fast) without violat-
ing the no-slip and other safety constraints. The evolution of
the hardware system with respect to the desired behavior as
well as a representation of the implicit and explicit safe sets
can be seen in Figure 5. Likewise, when Jump is commanded,
the current motion primitive traverses downward through the
walk speeds and then to Stand before executing the vertical
jump. As Jump is a transient primitive, this is followed
by the Land and Stand primitives before traversing back
to Walk(fast). The sequence ends successfully by cycling
back down through the walk speeds to Walk(in place) before
finishing at Lie. Unlike the naı̈ve transitions, the graph
traversal successfully and safely completes the sequence of



desired motion primitives.
In the naı̈ve case, the no-slip safety constraint is violated in

the Lie to Walk(fast) transition. Furthermore, the Walk(fast)
to Jump transition results in the failure of the Jump primitive
to track the desired behavior, as the Walk(fast) dynamic state
at the transition time is not in the region of attraction of
the Jump primitive. These results can be inferred from the
motion primitive graph, as there is no verification of a direct
transition between Lie and Walk(fast) and Walk(fast) and
Jump. Ultimately, the direct transitions fail to maintain safety
and cannot perform the desired sequence of behaviors.

A video comparison between the naı̈ve transitions and the
graph-traversal transitions is provided as an attachment (see
[26]) and a snapshot comparison of gait tiles and collected
data can be seen in Figure 6.

V. CONCLUSIONS

Motivated by the complex autonomy realized in the quasi-
static robotics realm and heuristically on dynamic legged
robots, this paper has leveraged ideas from dynamic systems
to make the first steps toward formulating a theory of
transition classes between “motion primitives”. With these
fundamentals, we proposed a tractable procedure to verify the
existence of transitions between motion primitives through
the use of a safety oracle and subsequently presented an algo-
rithm for the construction of a “motion primitive graph.” This
graph is used to determine transition paths via standard graph
search algorithms. To illustrate the viability of the method, it
was applied to a quadrupedal robot and a set of quadrupedal
motion primitives. This culminated in a demonstration of the
capability of our method via experiments on hardware while
the robot performed dynamic behaviors.

There are a number of extensions that we intend to investi-
gate in future. We would like to expand the theory described
in Section III to address real-world uncertainty and distur-
bances, and explore necessary conditions for ϕT (x

∗
A(t)) to

enter EB(t) in this context. In systems with a large number
of motion primitives, the final graph may offer many paths
from one primitive to another. We would like to consider
a “weighted” motion primitive graph, and understand what
metrics are useful as weights for transitions or primitive
executions (e.g. transition duration, peak torque, etc.). Addi-
tionally, we recognize that this method only addresses the
nominal use case of autonomy in dynamic systems, and
does not offer a solution to arbitrary initial dynamic states
or disturbances that throw the state outside the safe region
of attraction of the currently active primitive. Future work
intends to explore these open questions in the context of
primitive behaviors and the motion primitive graph.
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