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Abstract—The performance of a model-based controller can
severely suffer when its model inaccurately represents the real
world dynamics. We propose to learn a time-varying, locally linear
residual model along the robot’s current trajectory, to compensate
for the prediction errors of the controller’s model. Supervised
learning is performed online, as the robot is running in the unknown
environment, using data collected from its immediate past. We
theoretically investigate our method in its general formulation,
then apply it to a bipedal controller derived from the full-order
dynamics of virtual constraints, and a quadrupedal controller
derived from a simplified model of contact forces. For a biped in
simulation, our method consistently outperforms the baseline and
a recent learning-based method. We also experiment with a 12 kg
quadruped in simulation and real world, where the baseline fails
to walk with 10 kg of payload but our method succeeds.

Index Terms—Model learning for control, legged robots.

I. INTRODUCTION

MANY popular frameworks for controller design are based
on the robot’s model of dynamics. In the real world,

however, this model can often turn out to be inaccurate, due to,
for example, misspecification of the robot’s physical parameters,
mechanical wear and tear, and deployment-time interventions
such as additional payload. While a well designed controller is
robust to small inaccuracies in the dynamics, large deviations
may significantly degrade its performance.

Our goal is to make corrections to the model behind the
controller during deployment, through online learning using
onboard sensors. Since the nature of a model is to predict the
future given the past, data for supervised learning of dynamics
can be collected automatically without human supervision, as
time goes on and the future is revealed.
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Fig. 1. The 12 kg A1 robot carrying 10 kg of payload with our method, tested
for trotting in place and walking forward.

Because data are generated along the controller’s trajectory
that we are trying to improve, they might not contain enough
information about the entire system. Nevertheless, we find it
sufficient to limit the scope of learning to a local neighborhood
of the current point in the current trajectory, instead of the
entire system, if the learned model is updated in real time as
the trajectory evolves.

Fortunately, even globally complex systems, such as the
highly nonlinear hybrid systems for legged locomotion, can be
locally simple. Therefore, we also find it sufficient to learn with
only a time-varying, locally linear model, which is computation-
ally feasible to be updated in real time.

A. Related Work

1) System Identification: Given a system with known form
but unknown parameters, system identification (sysID) esti-
mates these parameters from signals given by the system ([1]).
Recent papers have applied sysID for inertial parameters of a
humanoid ([2], [3]). The parameters are assumed to be constant
in time, and estimation is performed before the deployment of a
controller. Thinking of identification as training and deployment
as testing, sysID trains a model before deployment, and keeps
the model fixed during testing. Since the goal is to model the
system’s behavior globally across the entire state space, sysID
usually requires driving the system to diverse enough states,
using diverse enough inputs. This requirement is known as
persistence of excitation in control theory, and might be difficult
to satisfy without many samples from the plant. In contrast,
we only model the system’s behavior locally, around the small
neighborhood of our current state, learning a linear model even
for complex systems with relatively few samples.
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Fig. 2. Block diagram of our method. ᾱ and β̄ are time-varying param-
eters of the nominal model for a system’s output dynamics, assumed to be
control-affine. As the model-based controller is running, data are collected into
the sliding window dataset, and supervised learning is performed to estimate
residual parameters α̃ and β̃; they are then used to improve the model behind
the controller. See Section II for more details.

2) Learning Dynamics: There is also a developing commu-
nity in machine learning, modeling dynamics of the environment
from interactions and observations ([4]–[11]). It has roughly the
same goal as sysID, but often uses powerful tools from deep
learning, and does not assume any specific form of the system;
here, learning often produces a general prediction model. We
diverge from this community in the global vs. local aspect (like
from sysID), but embrace its philosophy of learning a general
model with parameters that might not be interpretable.

3) Adaptive Control: The intuition of adaptive control is to
change the controller’s parameters during deployment ([12]).
Online system identification ([13]) is the most relevant sub-field,
since it directly concerns the model behind the controller. It has
been successfully applied in manipulation ([14]–[18]), and for
the location and inertial parameters of the center of mass of a
quadruped ([19]). For online sysID, the parameters considered
are very specific, and estimation relies on the physics of the
model and the particular controller for the application. Our work
considers parameters in a much more general sense closer to that
of the machine learning community. Our parameters are func-
tions of the state, thus are inherently time-varying and abstract.
In fact, in the control-affine form, every term of our dynamics
is updated in real time as the state evolves. Furthermore, unlike
sysID (online or not) whose goal is to identify the parameters, our
goal is simply to give accurate predictions for the next timestep,
again closer to the goal of learning. This allows our method to
not rely on the specific meanings of the parameters and instead
work with general model-based controllers. Another relevant
sub-field is L1 adaptive control ([20], [21]), which, like our work,
concerns the residual dynamics, but does not use learning.

4) Online Learning: Our work performs supervised learning
online, which has long been a subject of research in machine
learning ([22]–[24]). The two central questions are: where does
the label come from, and how is learning evaluated. Tradi-
tionally ([25]), learning has been evaluated with regret, and
labels can come from a potentially adversarial oracle. Recently,
the computer vision community has been using self-supervised
tasks to provide labels ([26]–[30]), and the continual learning
community has been evaluating with forward and backward
predictions ([4]) c.f. Subsection II-B.

Fig. 3. Bipedal walking with mass of each link scaled by two. Both our
method and that of [33] walk stably. Their RL-based method trains on 20,000
samples from the real environment before deployment. Our method trains
completely online and does not sample from or anticipate the real environment,
treating it as truly unknown until the robot is deployed, and results in smaller
impulses of control inputs and better tracking performance. The top panel
visualizes the gait generated by our method.

B. Conventions

In this paper, vectors (a,α) are bold and lowercase, matrices
(A,Ω) are bold and uppercase, scalars and functions (of all
type signatures) are not bold. We assemble matrices and vectors
like in MATLAB: [A,B] concatenates A and B horizontally
with a comma, and [A;B] concatenates them vertically with a
semicolon.0n denotes then× nmatrix of zeros, and1n denotes
the n× n identity matrix. Also, ‖ · ‖ denotes the 2-norm for
vectors (Euclidean norm) and matrices (spectral norm), unless
stated otherwise. We express quantities in the nominal dynamics
ᾱ with a bar, in the residual dynamics α̃ with a tilde, and in the
true (plant) dynamics α without anything on top.

II. METHOD

A. Unknown Dynamics and Linear Residual Models

Given a robotic system that is characterized by rigid-body
dynamics, we denote x ∈ Rn as its state, u ∈ Rm its vector
of control inputs, and y ∈ Rd its vector of outputs. The output
dynamics can almost always be written as a second-order system
of the following form ([31]), known as control-affine ([32]):

ÿ = ᾱ(x)u+ β̄(x). (1)

We consider model-based controllers whose goal is to drive the
vector of tracking errors η = [y; ẏ] to zero.

The bars on top of the variables imply that they come from
our assumed nominal model, which in reality can never be
completely accurate. The unknown real-world dynamics are
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called the true (plant) model, denoted without the bars as α, β.
We often use an alternative set of notations to write equation (1)
simply as:

ÿ = ᾱu+ β̄, (2)

in order to emphasize the role of ᾱ and β̄ as time-varying
parameters of the output dynamics.

To make corrections to the nominal model, we incorporate
two residual parameters and obtain the following form:

ÿ = (ᾱ+ α̃)u+ (β̄ + β̃), (3)

where α̃ is called the weight and β̃ is called the bias. They
are written as time-varying parameters, and have the same
dimensions as ᾱ and β̄ respectively. The tildes on top of them
emphasize that they are estimated from data.

To better understand these residual parameters, we manipulate
equation (3) into:

ÿ − (
ᾱu+ β̄

)
= α̃u+ β̃. (4)

Intuitively, the above equation says that the goal of learning is to
make the residual model on the right-hand side account for the
prediction errors of the nominal model on the left-hand side. It
also reveals the role of labels vs. covariates, as we explain next
in the context of learning.

B. Data Collection and Online Learning

For real systems, sensor data can only be collected at discrete
sampling intervals. We denote each sampling timestep by an
integer subscript, which converts equation (4) into:

ÿt −
(
ᾱtut + β̄t

)
= α̃tut + β̃t. (5)

Note that we are merely sampling a continuous system at dis-
crete timesteps, so continuous-time concepts such as acceler-
ation are still well defined. We collect a dataset of the form
D := {labels, covariates}s=t−k,...,t−1, where s is the index of
discrete timesteps, and k denotes the fixed size of the sliding
time window. From equation (5), we have

D =
{
ÿs −

(
ᾱsus + β̄s

)
,us

}
s=t−k,...,t−1

.

Given a dataset, our method solves regularized least squares
a.k.a. ridge regression on the labels and covariates. The weight of
the solution is α̃t, and bias is β̃t. Note that in textbook-style least
squares, the weight is a vector, and the label and bias are scalars;
for our learning problem, the weight is a matrix in Rd×m, and the
label and bias are vectors in Rd. But we can simply reduce this
to d independent vector-scalar least squares problems. The same
regularization is added independently to these d problems, since
they share the same covariates; thus inversion of the covariance
matrix, the most computationally costly step, is only performed
once.

The solved parameters are then immediately used by the
model-based controller to produce ut. In both of our later
examples, the baseline controller solves forut in an application-
specific optimization problem with the assumed nominal param-
eters ᾱt and β̄t. We simply substitute these with ᾱt + α̃t and
β̄t + β̃t respectively, as shown in Fig. 2.

Learning is performed online, as the controller is running with
the learned parameters. At the beginning, all residual parameters

are initialized to zero, because there is not enough data to learn
them. Once we are k steps into the trajectory, we have enough
data to form D as above and solve for the residual parameters;
informed by them, the controller generates an improved trajec-
tory, which in turn generates new data that are more relevant as
time goes on.

The fact thatD only keeps the k most recent data points imple-
ments a natural forgetting mechanism. In reinforcement learning
terms, D is called the replay buffer, which stores the off-policy
data that are not generated by the current controller; in our case,
data in D are generated by the old controllers using the residual
parameters from previous timesteps. Because we learn small,
local models, we encourage forgetting so that our model capacity
can be used only for the neighborhood of our current state. This
is in contrast to the vast literature in reinforcement learning [4],
[24], [33], [34], where the goal is to learn a large, global
model; there the replay buffer contains as much historical data as
possible, and various techniques are implemented to discourage
forgetting.

Our method can also be viewed as bootstrapping from a “bad”
controller based on an inaccurate model to a better one. This
might not be feasible, however, if the initial model deviates
too much from the plant. For example, if the nominal model
is so far off that the robot loses balance immediately, no useful
information will be contained in the data collected. Fortunately,
when deviations happen gradually over time, there will more
likely be enough information for learning to maintain a controller
that keeps generating useful data. We study this phenomenon
empirically in Section IV.

C. Theoretical Analysis

Suppose the true (plant) output dynamics is control-affine:

ÿt = αtut + βt. (6)

We prove that our method stabilizes the tracking errors under
two assumptions. The main theorem illustrates our intuition
of learning in a local time window under smoothly varying
dynamics, and characterizes the role of k, our window size.

Denote errors in the nominal model’s prediction as

ˆ̈yt := ÿt −
(
ᾱtut + β̄t

)
= α̂tut + β̂t, (7)

with α̂t :=αt − α̃t, and β̂t :=βt − β̃t.
Denote the prediction of the residual model as

˜̈yt := α̃tut + β̃t. (8)

Assumption 1: The model-based controller can stabilize the
tracking errors η = [y; ẏ] if for some ε > 0,

‖ÿt − ((ᾱt + α̃t)ut + (β̄t + β̃t))‖ < ε. (9)

Assumption 2: ‖α̂t+1 − α̂t‖ < δα, ‖β̂t+1 − β̂t‖ < δβ .
In words, Assumption 1 says that the proposed model-based

controller works when the proposed (nominal plus residual)
model is relatively accurate; Assumption 2 says that the de-
viations in dynamics are relatively smooth (in the space of
parameters) over time.
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In addition, we denote the motor torque saturation as ‖u‖ <
B. Denote u′

t = [ut; 1] ∈ Rm+1, and

U′ = [[u1; 1]
�; · · · ; [uk; 1]

�] ∈ Rk×(m+1). (10)

We set k ≥ m+ 1, so σmin(U
′) > 0, i.e. the covariance matrix

of ordinary least squares (OLS) has rank m+ 1.
Theorem 1: Given the above assumptions, if

(B + 1)2
√
d

σmin(U′)
k
√
k(δα + δβ) < ε, (11)

then the model-based controller stabilizes η.
Note that any claim of stability in Theorem 1 is completely

inherited from the baseline controller, when Assumption 1 holds.
Our method is agnostic to the exact type of stability e.g. expo-
nential / asymptotic, which depends on the underlying baseline,
and is orthogonal to the theory we develop.

In Theorem 1, B, d, δα and δβ are constants determined by
the application. ε is the model-based controller’s tolerance for
model inaccuracy, also independent of our method. The only
quantity we tune is k, the window size, which strongly affects
σmin(U

′). With a large k, we pay a factor of k
√
k, intuitively

due to the lag in our dataset. With a small k, we pay for the
decrease in σmin(U

′), as α̃ and β̃ become more sensitive to
noise. The user should tune k to find a sweet spot in the middle.
In practice, we use regularized least squares instead of OLS,
so σmin(U

′) is always > 0 and more noise tolerant, making the
balance less delicate w.r.t. choice of k. We use k = 100 in both
of our applications (100 and 200 ms respectively).

Before proving Theorem 1, we state two lemmas, whose
proofs are given in Subsection A of the appendix.

Lemma 1: For A ∈ Rm×n and b ∈ Rm, if ‖A‖ ≤ δA and
‖b‖ ≤ δb, then ‖[A,b]‖ ≤ δA + δb.

Lemma 2: Let yt ∈ Rd, ut ∈ Rm and At ∈ Rd×m. Let
yt = Atut for t = 1, . . ., k, and Ã be the OLS estimator of
the dataset {(y1,u1), . . ., (yk,uk)}. If for t = 1, . . ., k + 1,
‖At+1 −At‖ < δA, and ‖ut‖ < B, then

‖At − Ãt‖ <
B
√
d

σmin(U)
k
√
kδA, (12)

where U = [uT
1 ; . . .;u

T
k ] ∈ Rk×m.

Proof of Theorem 1: By triangle inequality, we have ‖u′
t‖ <

B + 1. Also define Ât = [α̂t, β̂t] ∈ Rd×m+1, and similarly
Ãt = [α̃t, β̃t]. Combining Assumption 2 and Lemma 1, we have
‖Ât+1 − Ât‖ < δα + δβ . Now

‖ÿt − ((ᾱt + α̃t)ut + (β̄t + β̃t))‖ (13)

= ‖ˆ̈yt − ˜̈yt‖ = ‖(α̂t − α̃t)ut + (β̂t − β̃t)‖ (14)

= ‖(Ât − Ãt)u
′
t‖ ≤ (B + 1)‖Ât − Ãt‖. (15)

By definition, Ãt is the least squares solution on D. We then
apply Assumption 1 and Lemma 2 to finish the proof.

III. APPLICATIONS

We now apply our method to two model-based controllers,
derived from two different perspectives for different robotic plat-
forms: a Lyapunov perspective to control the full-order dynamics
of bipedal robots, and a simplified dynamics based control

architecture for robust quadrupedal locomotion. We focus on
identifying the components of our method in the context of each
controller, without elaborating on derivations of the nominal
dynamics.

A. CLF-QP for Bipedal Locomotion

Let q be the robot’s configuration, and x = [q; q̇] be the
robot’s state. We define y = h(x), where h is called the virtual
constraints ([35]). For a biped, stabilizing η = [y; ẏ] means, for
example, that the torso maintains a constant posture, and the legs
walk in a scissor-symmetric gait.

The nominal output dynamics, whose derivation we omit, can
then be written in the familiar form of equation (1), using Lie-
derivatives of the nominal dynamics in the state space as ᾱ and
β̄:

ÿ =
d

dt

(
∂h

∂q

)
q̇− ∂h

∂q
D̄

(
C̄q̇+ ḡ

)
︸ ︷︷ ︸

β̄(x)

+
∂h

∂q
D̄B︸ ︷︷ ︸

ᾱ(x)

u, (16)

where D̄ is the inverse of the mass-inertia matrix, C̄ is the Cori-
olis matrix and ḡ is the gravity vector. While ᾱ(x) might not be
square (d = m) in general, this particular bipedal controller has
the same number of virtual constraints as actuated joints. Now
the control law u = ᾱ(x)−1(−β̄(x) + v), a.k.a. input-output
(I/O) linearization, produces ÿ = v.

We can then design v to stabilize the output dynamics using
control Lyapunov functions (CLFs), a common tool in control
theory for providing stability guarantees in legged locomotion
([36]). Because η̇ is linear in η and v, it is straightforward to
find a CLF by solving the Lyapunov equation V (η) ([37]). It is
then a well known fact that V̇ (η,v) < −cV implies exponential
stability of η(t), with a constant c > 0. This motivates the
following CLF-based quadratic program (CLF-QP) to solve for
v:

v(x) = argminv u�u

s.t. C1.V̇ (η,v) < −cV

C2.u = ᾱ(x)−1
(−β̄(x) + v

)
,

C3.umin 	 u 	 umax, (17)

where umin and umax are bounds of the torque saturation
constraints. Since the output dynamics is already in the form
of equation (1), it is straightforward to apply our method to
obtain α̃ and β̃. We can then modify the C2 in the optimization
problem (17) to have

u = (ᾱ+ α̃)−1(−(β̄ + β̃) + v). (18)

In Section IV we show that this simple modification leads to
significant improvements under uncertain dynamics.

B. MPC With Contact Force for Quadrupedal Locomotion

To control a quadrupedal system walking stably under large
disturbance (such as heavy loads), we take the model predic-
tive control (MPC) approach using the simplified dynamics
from [38] as our baseline controller.
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For quadrupedal dynamics, let p, ṗ, p̈ ∈ R6 be the position,
velocity and acceleration of the robot’s center of mass (CoM).
Let f i ∈ R3 be the ground reaction force at the robot’s ith foot,
with i ∈ {1, 2, 3, 4}. We also denote f = [f1; f2; f3; f4] ∈ R12.
The nominal dynamics of the CoM is given by

p̈ = D̄Gf − ḡ, (19)

where ḡ ∈ R6 is the gravity vector, D̄ ∈ R6×6 is the inverse
mass matrix, and G ∈ R6×12 is called the grasp map, which
depends on the robot’s state and is assumed to be accurate.

The goal of the model-based controller is to have p and ṗ
track the desired position and velocity pd and ṗd, generated
from user command. In Sec. II notations, y = p− pd, we want
to stabilize η = [y, ẏ] around zero. This is achieved by having p̈
track some desired acceleration p̈d, generated from PD control
on pd and ṗd. The model-based controller then uses equation
(19) to solve for f :

argminf‖D̄Gf − ḡ − p̈d‖Q + ‖f‖R
s.t. stance and swing leg constraints,

friction pyramid condition. (20)

where more details can be found in [39], Following the outline
in Section II, we modify (19) to incorporate the linear residual
model:

p̈ = (D̄+ D̃)Gf − (ḡ + g̃), (21)

where D̃ is the weight, and −g̃ is the bias.
Note that the nominal dynamics in (19) has no Coriolis terms,

a simplification often adopted in the literature for model-based
controller design of quadrupeds with small angular velocity.
While this simplification has been validated in many imple-
mentations, it is never completely accurate. Therefore, even
if D̄ = D and ḡ = g i.e. they are both accurate parameters,
(19) is still an inaccurate description of the plant. We make
no distinction, philosophically or algorithmically, between un-
known dynamics e.g. payload, and unmodeled dynamics e.g. the
Coriolis terms discarded by design. Our true output dynamics
can take any general form. Also note that Assumption 1 is in fact
not satisfied by our baseline controller due to its simplifications
e.g. massless legs. In this case, stability is left to empirical
validation.

Moving on, we sample equation (21) at discrete timesteps:

p̈t −
(
D̄Gtf t − ḡ

)
= D̃tGtf t − g̃t, (22)

and form the dataset as

Dq = {p̈s − (D̄Gsfs − ḡ),Gsfs}. (23)

After solving for D̃ and ḡ, we use them to modify the objective
function in equation (20) as:

min
f

‖(D̄+ D̃)Gf − (ḡ + g̃)− p̈d‖Q + ‖f‖R. (24)

By definition, D̄+ D̃ must be positive definite; this is also
necessary for the optimization problem above to make sense.
For computational efficiency, we solve for D̃ unconstrained, and
find that our least squares solution in fact always gives D̄+ D̃
positive definite for our experiments.

IV. RESULTS

Video of our experiments is available at https://youtu.be/Je_
2Y-FQpKw ([40]). Simulations are performed in the PyBullet
([41]) physics engine.

A. Simulation for Bipedal Walking

Our baseline controller discussed in Subsection III-A is taken
from [33], which introduces its own setting and method for
unknown dynamics. We perform simulation in their setting, and
make comparison with their method.

The problem setting is based on RABBIT ([42]), an under-
actuated planar five-link bipedal robot with seven degree-of-
freedom; virtual constraints and controller design are based
on [37]. Model uncertainty is introduced in [33] by scaling the
mass of each link by a factor of two in the real environment. The
baseline CLF-QP controller falls in a few steps in this setting, due
to the significant difference in dynamics between the nominal
and true model.

By querying the plant, [33] uses model-free reinforcement
learning (RL) to train a policy that directly adds on the original
control inputs u, without reasoning about the unknown dynam-
ics in the model space. Specifically, the commanded control
inputs take the form u+ uθ(x), where u is a neural network
policy with parameters θ. Their reward is designed to encourage
V̇ < −cV , where the value of V is obtained by simulating in
the plant. After 20,000 samples from the plant simulated using
the true dynamics, their method trains a policy which walks in
the true dynamics without falling.

Our method walks stably in the same setting, training com-
pletely online without querying the plant at all before deploy-
ment. In fact, Fig. 3 shows that our method enjoys smaller
impulses of control inputs and better tracking performance than
the RL-based method, even though the latter had privileged
access to the plant before deployment to optimize exactly for
these metrics.

Online learning enables us to treat the plant as truly unknown,
in terms of both data and mathematical representation, while
only the latter is unknown for methods that train offline like
in [33]. This philosophical difference prevents our controller
from overfitting on the training environment. In particular, our
controller still walks stably under the original dynamics without
scaling, where the policy trained with the scaled links fails,
because it overfits to the scaled dynamics.

In addition, our controller walks stably in all environ-
ments below, where the baseline and the RL-based method
cannot:

1) scaling the control inputs by half, in order to simulate
transmission inefficiencies and motor wear and tear;

2) scaling the mass of the torso by four, in order to simulate
payload on the back of the humanoid;

3) scaling the mass of the right leg by four, as an example of
asymmetric changes in dynamics.

We keep the same hyper-parameters for all the experiments
above, including a windows size of 100 ms (where k = 100 and
each timestep is 1 ms). The robot is still able to walk under
the scaled dynamics with a window size of 10 or 1000, but has
higher norm of control inputs and tracking errors.

https://youtu.be/Je_2Y-FQpKw
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Fig. 4. Quadruped walking with payload in simulation. We start with an
empty payload, and increase its mass by 5 kg / s once simulation begins. The
baseline has completely fallen in 2 s, but the proposed method still walks stably
after 10 s (50 kg). The bottom visualizations are captured when the payload
reaches the specified mass. The torque limit is reached at 25 kg.

B. Simulation for Quadrupedal Robot

Our baseline controller, as discussed in Subsection III-B, is
based on [38] and used subsequently in [39] and [43]. Our
implementation is modified from the publicly available code
of [43] on an Unitree A1 quadruped, and keeps their original
parameters unless stated otherwise. The A1 weighs 12 kg and
has 12 motors, three for each leg, with the stated torque limit
of 35.5 Nm. We experiment in PyBullet using Unitree’s URDF
description, and also on a real robot. In both simulation and real
world, we use a window size of k = 100 (like for the biped);
the controller runs at a frequency of 500 Hz, making the dataset
window 200 ms.

We command our robot to walk with linear velocity of 0.5 m / s
in the x-direction, while maintaining CoM height of 0.24 m. Both
the baseline and the proposed method can walk stably without
payload, while tracking the desired velocity and height. With
6 kg of payload, however, the baseline can barely walk at 2 / 3
the desired velocity, and sags to 2 / 3 the desired height; the robot
falls with 7 kg.

The proposed method walks stably with 12 kg of payload
(same as its body mass), while tracking the desired velocity up to
0.05 m / s, and the desired height up to 0.01 m; all motors torques
are less than 35.5 Nm. With more than 12 kg, however, tracking
becomes less accurate, and with 15 kg the robot falls. Since the
payload is carried from very the beginning of simulation, the
robot visibly sags for the first fifth of a second, as we collect
data before we can estimate the residual parameters. With 12 kg
it soon recovers from the sag, but for larger payloads it struggles
to get back.

Next, we experiment with gradually changing dynamics. We
start with an empty payload, and increase its mass by 5 kg / s, that
is, 0.001 kg per timestep, once simulation begins. The tracking
errors are shown in Fig. 4. The baseline falls within 2 s. We

Fig. 5. Quadruped walking with payload in the real world.

have tried to improve the baseline by tuning the PD gains for
p̈d, but found it ineffective. This observation is reasonable, since
larger gains only make p̈d more aggressive, but cannot help if
the model-based controller fails to achieve it using the nominal
dynamics. The proposed method walks stably even when the
payload reaches 50 kg. Motor torques reach the specified limit
at 25 kg (5 s), but the URDF allows simulation to keep running.

C. Hardware Experiments for Quadrupedal Robot

To facilitate hardware testing, we fit the Unitree A1 quadruped
with a loading rig designed to hold up three standard 1 in weight
plates. The rig allows for incremental, discrete changes in load
while the quadruped is in operation. The rig itself weighs 0.9 kg.

The experiments were designed to compare the performance
of the baseline and proposed controllers under varying load
conditions during operation. Two tests for each controller were
performed: a step-in-place test and a 0.1 m/s forward motion
test. The load conditions for the tests are shown in Table 1. Due
to the manual loading process, the duration of each load varies
by a small amount of transition time, typically less than 1 s.
To protect the hardware from possible damage, we do not load
beyond 10 kg, and limit operation at this load to 5 s.

In the transition from simulation to hardware, we had to
address the problem of acceleration estimation from noisy mea-
surements. [43] uses a Kalman filter to fuse IMU and joint en-
coder measurements and produce a CoM velocity measurement.
From this, first order difference is then used to compute a CoM
acceleration estimate for the learning algorithm. Two parameters
for the Kalman filter, namely the window size and IMU variance
value, are tuned to give a final acceleration estimate with suitable
trade-off between lag and noise. The window size is modified
from 120 to 60 samples, and the IMU variance is modified from
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TABLE I
LOAD CONDITIONS FOR HARDWARE EXPERIMENTS

equal to the encoder variance to 5 times the encoder variance.
Ultimately, after tuning, the estimator produces acceptable linear
acceleration estimates, but the angular terms proved too noisy
to be useful. As such, we proceeded with hardware experiments
with learning enabled for only the linear terms.

The hardware experiments were performed on the A1 on flat,
grassy terrain. Both the baseline and proposed methods perform
nominally with low load, but as the weight increases, the baseline
controller sags in body height and is unable to maintain forward
velocity. The proposed controller does not suffer this degradation
and is able to maintain desired body height and forward velocity
for the range of load conditions. Results for the forward walking
test are summarized in Fig. 5. Video comparison of both trot-in-
place and forward walking is available in [40].

V. DISCUSSION

While the nominal models in our applications are derived
from classical mechanics, our method can be applied to any
black box nominal model e.g. a simulator. While our baselines
are derived from classical control principles, our method can
also be applied to any controller using the black box model,
even a policy trained in simulation. We hope to explore these
potentials in future work, under broader definitions of unknown
dynamics, such as sim-to-real transfer.

APPENDIX

A. Proofs

1) Proof of Lemma 1:

‖[A,b]‖ = max
x∈Rn,y∈R

∥∥∥∥[A,b]

[
x
y

]∥∥∥∥ :

∥∥∥∥
[
x
y

]∥∥∥∥ ≤ 1

= max
x∈Rn,y∈R

‖Ax+ yb‖ :

∥∥∥∥
[
x
y

]∥∥∥∥ ≤ 1

≤ max
‖x‖≤1

‖Ax‖+ max
y∈[−1,1]

‖yb‖

= δA + δb.

2) Proof of Lemma 2: We first prove the vector version in a
claim, which is used in the proof of the lemma.

Claim 1: Consider yt = 〈ut,at〉 ∈ R for t = 1, . . . , k, and
ut,at ∈ Rm. Suppose ‖ut‖ < B and ‖at+1 − at‖ < ε. Let ã
be the OLS estimator on this dataset, then

‖ak − ã‖ <
B

σmin(U)
k
√
kε.

Proof: Define the feasible set of weights for a dataset as

A = {(a1,a2, . . . ,ak) : yt = 〈ut,at〉 , ‖at − at+1‖ ≤ ε, ∀t} .
Then ak can only exist in the kth component of A, denoted

Ak = {ak : ∃(a1, . . . ,ak−1) s.t. (a1,a2, . . . ,ak) ∈ A} .

Our goal is to bound maxak∈Ak
‖ã− ak‖.

Defineet = at − ak, whereek = 0 and‖et+1 − et‖ < ε. We
can rewrite A using these conditions as

A = {(a1, . . . ,ak) : yt = 〈ut,at〉 , et = at − ak,

ek = 0, ‖et+1 − et‖ < ε,∀t}.

Define E = [eT1 ; . . .; e
T
k ] and A = [aT1 ; . . .;a

T
k ]. Also, by

definition of OLS, ã = (UTU)−1UTy. Therefore

‖ak − ã‖ = max
ak∈Ak

‖ã− ak‖

= max
ak∈Ak

‖(UTU)−1UTy − ak‖

= max
ak∈Ak

‖(UTU)−1UT (U ◦A · 1)− ak‖

= max
ak,E

‖(UTU)−1UT (Uak +U ◦E · 1)− aK‖

= max
E

‖(UTU)−1UT (U ◦E · 1)‖

≤ ‖(UTU)−1UT ‖max
E

‖U ◦E · 1‖

=
maxE ‖U ◦E · 1‖2

σmin(U)
,

where ◦ denotes the Hadamard operator, σmin(U) is the min-
imum non-zero singular value of U; the last equality follows
from singular value decomposition of U. Note that

max
E

‖U ◦E · 1‖ < max
t=1,...,k

‖ut‖‖[0; · · · ; k − 1]‖ε

<

√
3B

3
k
√
kε < Bk

√
kε,

which finishes the proof of Claim 1.
Now we extend the result of Claim 1 to prove Lemma 2, Note

that in the context of Lemma 2, At ∈ Rd×m, and is different
from the definition of A in the proof of Claim 1. We use the
standard matrix norm relationship ([44])

‖X‖/
√
d ≤ ‖X‖2→∞ ≤ ‖X‖, (25)

for any matrix X ∈ Rd×m. Combining the second half of equa-
tion (25) with the lemma’s assumption, we have

‖At+1 −At‖2→∞ < ε. (26)

As explained in Subsection II-B, the matrix-vector least
squares problem is solved by reducing to d independent vector-
scalar sub-problems, for each dimension of yt. Each sub-
problem solves for one row of Ã. From equation (26), we already
know that rows of the ground truth weight matrices satisfy the
smoothness assumption in Claim 1. Therefore we can apply
Claim 1 to each row of Ã, yielding

‖Ak − Ã‖2→∞ <
B

σmin(U)
k
√
kε.

Combining this with the first half of equation (25) finishes the
proof of Lemma 2.
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