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Automated gap-filling for marker-based biomechanical motion capture data
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ABSTRACT
Marker-based motion capture presents the problem of gaps, which are traditionally processed
using motion capture software, requiring intensive manual input. We propose and study an
automated method of gap-filling that uses inverse kinematics (IK) to close the loop of an itera-
tive process to minimize error, while nearly eliminating user input. Comparing our method to
manual gap-filling, we observe a 21% reduction in the worst-case gap-filling error (p< 0.05),
and an 80% reduction in completion time (p< 0.01). Our contribution encompasses the release
of an open-source repository of the method and interaction with OpenSim.
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1. Introduction

Motion capture is often used in the analysis of human
motion, as well as many other fields, including per-
formance capture for animation and video games, and
sports biomechanics (Moeslund et al. 2006; Starck
and Hilton 2007; Federolf 2013). Marker-based
motion capture, such as that offered by Vicon Motion
Systems Limited (XXXX), Qualisys (Qualisys Motion
Capture Systems XXXX), OptiTrack (Nagym�at�e and
Kiss XXXX; OptiTrack inc), and other leading motion
capture companies, tracks the position of small spher-
ical retro-reflective markers, whereas markerless
options, such as Microsoft Kinect (Zhang 2012), use
computer vision to extract information about the
motion of subjects. Occlusion is a problem that can
occur in all of these scenarios due to limbs, clothes,
or simply the environment obstructing the camera’s
view. In marker-based motion capture, this leads to
gaps in the marker trajectories that must be filled to
obtain the position information and to perform sub-
sequent analysis (Liu and McMillan 2006; Begon et al.
2008; Federolf 2013; Feng et al. 2014).

Traditional methods of gap-filling marker-based
motion capture data are time-intensive manual meth-
ods where the user must visually inspect each gap
and decide how it should be filled with interpolation
(Vicon Motion Systems Limited, Fill gaps in trial
data, XXXX). The user must subjectively choose the
type of interpolation to be used, rather than taking a
data-driven approach. These interpolation methods

are designed around the assumption that the data
present before and after the gap were reconstructed
and labeled accurately (Howarth and Callaghan 2010).
Some approaches have taken advantage of probabilistic
models (Tits et al. 2018), Kalman filters (Aristidou et al.,
2008), or information from additional sensors (Bobilev
et al. 2012) to help in reconstruction of missing marker
data. Newer methods are resorting to the use of machine
learning or principal component analysis (Liu et al.
2006; Federolf 2013; Gloersen and Federolf 2016), such
as the work by Liu and McMillan (Liu and McMillan
2006) which can recover missing data even if only half
the markers are available by first training a classifier to
determine principal components, and then using this
classifier to recover missing data based on the principal
components. One pitfall of such methods is that they
require clean and filled data to implement the training
stage, which may be difficult to obtain. There are also
many matrix based gap-filling methods (Feng et al. 2014;
Peng et al. 2015), such as one by Tan et al. (2015),
which uses skeleton constrained singular value thresh-
olds. This has the benefit of enforcing kinematic con-
straints and using existing data for training, so no
additional data are needed. Due to the importance of
kinematic constraints, other methods have also included
skeletal properties (Herda et al. 2001; Begon et al. 2008).

For all of these methods, however, the existing
data must be valid, which may not be the case.
Marker data may be incorrectly labeled if there are
too few cameras to capture the subject markers
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accurately (Herda et al. 2001; Chiari et al. 2005;
Maycock et al., XXXX; Meyer et al. 2014), and using
this data to reconstruct missing trajectories will result
in more invalid data. Marker data may also be invalid
if other reflective objects in the environment are
incorrectly registered as markers by the motion cap-
ture system. Being able to effectively gap-fill data with
errors such as this would require a method to deter-
mine where the existing marker data is incorrect so
that it can be removed. Then, any traditional gap-fill-
ing method could be applied to the removed regions
to replace the invalid data. We consider an inverse
kinematics (IK) validation that could act as an inter-
mediate step to find regions where certain markers
violate kinematic constraints. In these regions, the
inverse kinematics marker error will be especially high
compared to the surrounding regions, indicating that
they were likely captured incorrectly. IK only requires
information about marker placement and rigid body
relations, which means that it can be processed with
no data from other sensors and without any manually
filled training data. In regions of invalid kinematics,
motion capture data can be adjusted to repair the
errors in labels or to correct inaccurately filled marker
data (Figure 1).

The contributions of this work are (1) the integra-
tion of inverse kinematics to monitor and correct the
gap-filling process, (2) evaluating the performance of
the method on real datasets in comparison to trad-
itional manual tools, (3) releasing a public repository
that contains the tools we developed to process
motion capture data. With a simple to use API devel-
oped in MATLAB, our automated gap-filling method
iterates through the process, removing the need for
user intervention, reducing the time needed to fill
gaps, and improving the accuracy of the gap-filled
results. Unlike other methods of gap-filling, our
method yields accurate results even when there are
incorrectly labeled regions in the input data by auto-
mating the process with OpenSim (Delp et al. 2007;
Seth et al. 2018), an open-source musculoskeletal
modeling and simulation software, to perform IK and
establish such regions. The steps of IK-based marker
validation and subsequent gap creation are not present

in existing gap-filling methods, and its effectiveness is
investigated. The core impact of this work is in the
improvement of existing gap-filling methods that rely
on intense manual work that, if reduced, would allow
researchers in different fields that dependent on
motion capture (e.g., gait analysis) to conduct analyses
much more quickly and with greater accuracy.

2. Methods

2.1. overview

Analysis of improperly labeled data to calculate joint
angles through inverse kinematics (IK) yields large devia-
tions between the kinematic fit and the original marker
data wherever the marker data is incongruent with a
possible posture. We suggest that large deviations from
the output of IK indicate that the data were recon-
structed inaccurately, possibly due to improper labeling,
invalid gap-filling, or interference from other reflective
objects in the motion capture space, and we investigate
this claim below. Because of this, trajectories with suffi-
ciently large IK deviations should be removed from
those regions. The new marker data with artificial gaps
created can be gap-filled again. This process can be iter-
ated until the IK errors converge below some user-set
thresholds, or until a maximum iteration limit is
reached. This process starts from the motion capture
data in a C3D format (C3D. The 3D Biomechanics Data
Standard 2018), a standard format supported by major
manufacturers of 3D motion capture systems. Gap-fill-
ing is realized by combining interpolation-based meth-
ods with information about rigid body segments from
an OpenSim model to intelligently select the closest
available marker on the same segment for interpolation
methods that require information from such additional
donor markers. The interpolation methods are imple-
mented in MATLAB, based on openly available descrip-
tions of methods used by Vicon Nexus (Vicon Motion
Systems Limited, What Gap Filling Algorithms are Used
Nexus 2, XXXX). After each gap-filling process, the gap
creation process uses the information output from IK.

Algorithm 1 Iterative Gap-Filling Algorithm
1: procedure IterativeGapFill
2: change  true
3: while change do
4: markers  GapFill(markers)
5: markers, change  GapMake(markers)

return markers

2.2. Gap-Filling

The gap-filling step uses MATLAB to mimic manual
approaches to gap-filling offered by motion capture

Figure 1. Visualization of data flow.
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software. For example, Vicon Nexus (Vicon Motion
Systems Limited, What Gap Filling Algorithms are
Used Nexus 2, XXXX), supplies various gap-filling
algorithms that may be useful in different situations,
among which are: spline fill, pattern fill, and rigid
body fill. Spline fill uses a cubic or a quintic spline to
interpolate missing marker data. Pattern fill uses the
trajectory of one donor marker to estimate the trajec-
tory of the missing marker. Rigid body fill uses three
or more donors to estimate the trajectory of the miss-
ing marker, under the assumption that the donors
and the fill trajectory are all part of a rigid
body segment.

The donors for rigid body fill are determined
through rigid body segment information contained in
the OpenSim model of the subject. For a given
marker, all other markers in the same segment are
considered as potential donors and will be used if
they have data during the gap. The donor used for
pattern fill is given by the marker on the same seg-
ment that has the lowest average distance to the miss-
ing marker at the frames before and after the gap.

Rigid body fill uses many donors in calculating the
missing trajectory, so it is less sensitive to errors in
any one of the donors, whereas pattern fill, using only
one donor, will copy any errors in the donor to the
missing trajectory. Spline fill, using only the end-
points of the missing trajectory, is highly subject to
small errors in the data near the endpoints of the gap,
and is best for filling short gaps (Liu and McMillan
2006; Howarth and Callaghan 2010). These methods
are implemented in MATLAB to allow for com-
plete automation.

All of these methods work best with shorter gaps,
so gaps are filled from shortest to longest, which
allows short gaps to be filled and used to fill longer
gaps. Rigid body fill is used first wherever possible,
and if there are insufficient donors, then rigid body
fill will fail, and pattern fill will be tried next. If there
are no valid donors for pattern fill, then the algorithm
will move on to the next longest gap. Only when the
algorithm has tried to fill every gap with rigid body
and pattern fill will spline fill be used on the shortest
gap, in order to minimize its usage. After this single
usage of spline fill, gaps will be recalculated, and the
algorithm will again start with rigid body fill on the
new shortest gap.

The equations to calculate filled marker positions
are reproduced below for the sake of completeness,
and to provide more specific details on implementa-
tion, although they are based on the openly available
methods used in Vicon Nexus (Vicon Motion

Systems Limited, What Gap Filling Algorithms are
Used Nexus 2, XXXX). For the following discussion,
s ¼ ½0, 1, . . . , n� � Z will represent the data sample
number during a gap of length n� 2, and s ¼
fsi=n : si 2 sg will be a parameterization of time over
the duration of a gap where s¼ 0 is the last time that
data exists before the gap, s¼ 1 is the first time when
data is seen again after the gap. Let pd, i 2 Rm�3 rep-
resent the global x, y, and z coordinates of the m
donor markers at s ¼ i, and let pf , i 2 R3 represent
the coordinates of the marker to be filled at the same
point in time.

1. Spline fill (m¼ 0)
Spline fill fits a cubic polynomial to the gap data with
boundary conditions defined at the edges of the gap.
This is done using MATLAB’s interp1() function with
the ’spline’ option.

2. Pattern fill (m ¼ 1or2)
Pattern fill takes the offset for one donor marker
between its actual data and a linear interpolation, and
adds that offset to a linear interpolation of the desired
marker. If there are two valid donor markers, the one
with the closest average position to the desired
marker at the frames before and after the gap will be
selected. The coordinates of the missing trajectory can
be calculated as

boi ¼ pd, i�ðpd, 0 þ sðpd, 1�pd, 0ÞÞ (1)

pf , i ¼ ðpf , 0 þ sðpf , 1�pf , 0ÞÞ þ boi (2)

where boi is the offset between the actual data and the
linearly interpolated data, for both the donor marker
and the desired marker, at s ¼ i. As stated above, s is
a parameterization of time, pd, i is the position of the
donor marker at s ¼ i, and pf , i is the estimated pos-
ition of the missing marker at s ¼ i.

3. Rigid body fill (m � 3)
The method for rigid body filling uses the Kabsch
algorithm to determine the optimal rotation matrix
between the donor marker data at s¼ 0 and at s ¼ i,
and another optimal rotation matrix between the
donor marker data at s¼ 1 and at s ¼ i. Let

OðiÞ ¼ 1
m

X
p2pd, i

p (3)

represent an origin row vector on the rigid body.
Then set pd, i ¼ pd, i�OðiÞ in order to offset pd, i to be
with respect to OðiÞ by subtracting the origin from
each of the rows.
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Next, create covariance matrices C0 and C1 where
CjðiÞ ¼ pd, j

>pd, i and perform a singular value decom-
position such that Cj ¼ UjRjV�j : Let Lj ¼ I 2 R3�3

with Lj½3, 3� ¼ sgnðdetðUjV�j ÞÞ: The rotation matrices
Rj ¼ VjLjU�j can then be defined. Given R0 and R1,
estimated trajectories G0 and G1 can be written as

GjðiÞ ¼ RjðiÞðpf , j�OðjÞÞ> þ OðiÞ> (4)

with j¼ 0 estimating from s¼ 0 and j¼ 1 estimating
from s¼ 1. The interpolated data can then be
expressed as

pf , i ¼ sG1ðiÞ þ ð1�sÞG0ðiÞ (5)

For each time frame, every available donor will be
used to interpolate the gap, which means that donors
can vary between frames. In other implementations,
fills may be rejected if there are fewer than three valid
donors at any time frame. In the proposed implemen-
tation, only those frames with fewer than three
donors will be rejected, and the rest of the gap will be
filled. This ensures the maximal use of rigid body fill
over other methods of gap-filling, because it is the
least susceptible to errors from bad donor data due to
its inclusion of several donors.

Algorithm 2. Gap-Filling Algorithm
1: procedure GapFill(markers)
2: gapTable findGapsðmarkersÞ
3: for gap in sortðgapTableÞ do
4: if gapLength(gap) ¼ 1 then
5: SplineFill(gap)
6: gapTable findGapsðmarkersÞ
7: change  true
8: while change do
9: while change do

10: change  false
11: for gap in sortðgapTableÞ do
12: gapChanged true
13: if! RigidBodyFill(gap) then
14: if! PatternFill(gap) then
15: gapChanged false
16: change change or gapChanged
17: gapTable findGapsðmarkersÞ
18: if ! SplineFill(smallestGap) then
19: change false

return markers

2.4. Gap creation

After each gap-filling step, the gap creation step is
necessary to validate the filled trajectories, and to
remove those that are not viable. Marker data with
initial errors will show impossible or unlikely

trajectories in both the initial data and the filled data,
all of which must first be deleted, before being filled
again. Without the gap creation step, any unchecked
initial errors would propagate to the filled trajectories
and remain there, giving an inaccurate representation
of the true motion of the markers. To determine
which sections have invalid trajectories after the
motion capture data has been filled entirely, the
marker data is run through inverse kinematics (IK) in
OpenSim, which is generally used to ascertain the
joint angles that would yield that marker data using
the method of least squares fit. For our gap-filling
purposes, however, the joint angles are not of direct
interest but are an intermediate output to obtain the
positions of markers on the kinematic fit model. By
using the position of markers given the joint angles
and comparing with the marker positions in the ori-
ginal marker data, we determine a measure of the
error for each marker at every frame by taking the
Euclidian distance between them. The marker posi-
tions on the kinematic fit model are provided from
OpenSim, but the calculation of errors for each
marker and frame, as well as all subsequent steps, are
done in MATLAB. These IK errors are compared
against two user-set thresholds to determine regions
of deletion. For each marker, every region with error
exceeding the lower threshold will be a candidate for
deletion, and for each candidate region, any region
that has a peak error exceeding the higher threshold
at any point will be deleted. The entire region above
the lower threshold will be deleted to ensure that the
fill for this gap uses data with low error. With these
artificial gaps created, the gap-filling step can be run
again to attempt to find a more accurate fill based on
the IK error metric.

Algorithm 3 Gap Making Algorithm
1: procedure GapMake(markers)
2: errTable IKðmarkersÞ
3: badRegions errTable>lowThreshold
4: change false
5: for region in badRegions do
6: if MaxErrorðregionÞ>highThreshold then
7: delete region from markers
8: change true

return markers, change

2.5. Validation

The motion capture data that was used for validation
of our gap-filling method was recorded with cameras
at a rate of 200Hz. Subjects consented participation
in protocols approved by the Institutional Review
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Board at Georgia Institute of Technology. Lower body
locomotion on level ground, stairs and ramps was
performed by 22 subjects instrumented with a 28-
marker lower body setup. In addition, 10 subjects per-
formed level ground walking and tossing actions
while instrumented with a 52-marker full body setup
based on the Cleveland Clinic marker set (Zeller et al.
2003); both marker sets are presented in Figure 2.

The motion capture data was used in four different
aspects of validation. First, we evaluated the stability
of reconstruction by comparing automatically filled
data to manually filled data as the ground truth
(2.4.1). For this, we inserted artificial gaps to sections
of the marker set to determine the reconstruction
error as the deviation from the ground truth.

It is evident that to compute the true reconstruction
error of gap filling, a ground truth set of trajectories with
no gaps would be necessary. However, when the algo-
rithm is applied to a new unprocessed dataset as it is
intended to be used, there is no ground truth of what
the real marker positions are, and it is therefore impos-
sible to calculate true reconstruction accuracy. Because
of this, the next validation (2.4.2) is to show that IK error
is correlated to the reconstruction error, supporting the
use of IK error as the criterion for our algorithm.

Third, we compared manual gap-filling to our pro-
posed method in terms of the processing time and
error reflected in the inverse kinematics (2.4.3).
Fourth, we evaluated the performance of the auto-
mated gap-filling method for completely processing
the dataset (2.4.4).

1. Stability of reconstruction accuracy
The stability of reconstruction accuracy for the gap-
filling method was studied by using a subset of four
motion capture trials, from two subjects instrumented
with the lower body setup (Figure 2(a)). N¼ 5000
artificial gaps were introduced in each trial that were
automatically gap-filled using our iterative method,
including feedback from IK, with up to 10 iterations.
The deviation between manually filled and automatic-
ally filled data was used as the reconstruction error.

2. Validation of IK error
In a true experimental setting, neither true recon-
struction error nor ground truth marker data would
be available, but the IK error can always be deter-
mined, so a strong correlation between IK error and
reconstruction error would imply that IK error can be
used to determine where marker data is incorrect,
instead of using reconstruction error.

To determine if there is a relation between recon-
struction error and IK error, four motion capture tri-
als, from two subjects instrumented with the lower
body setup (Figure 2(a)) were first manually filled by
individuals with experience in motion capture soft-
ware. This process included a thorough inspection,
including relabeling markers that were incorrectly
labeled and deleting measured data that did not cor-
respond to any actual markers. This manually filled
data established an estimated ground truth of the
marker positions over time. The raw data was filled
automatically using only interpolation methods, with

Figure 2. (a) Lower body marker setup. A 28-marker set was used for lower limb kinematics in ambulation. (b) A 52-Marker Full
Body Setup for locomotion and throwing.
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no iterative IK feedback and no deletion of marker
data to create an example of reconstructed trajecto-
ries. The deviation between the automatically filled
and manually filled data provides the reconstruction
error of the automatically filled data. For every
marker at every frame of the automatically filled,
N¼ 79365 pairs of reconstruction error and IK error
were computed, and the correlation between the IK
error and the reconstruction error was determined.

3. Comparison with manual Gap-Filling
Our gap-filling method was compared against manual
gap-filling with respect to the time taken to complete
the process, in addition to the final IK error. Within
a trial, for each marker, the maximum IK error over
all frames was calculated, and these marker maxi-
mums were averaged over all markers and all trials as
a metric of the typical worst-case reconstruction
error. The mean of the IK error over all frames and
markers was also calculated as a metric of the average
reconstruction error. The gap-filling data was pro-
duced from N¼ 18 trials from 4 subjects. One subject
was instrumented with the full body setup (Figure
2(b)), while the other three were instrumented with
the lower body setup (Figure 2(a)). As reference for
the processing time, the automated gap-filling was
performed on a laptop computer with an Intel Core
i7-9750H 2.60GHz processor and 32GB RAM, and
ran for 5 iterations. The manual gap-filling was exe-
cuted by personnel with previous experience in the
use of the motion capture software (Vicon Nexus).

4. Deployment of the algorithm to the complete
dataset
Finally, we evaluated the performance of the method by
iteratively filling gaps and calculating the maximum IK
error after each iteration to determine if the highest IK
error decreases through iterations as a result of using the
IK error as feedback. We evaluated the use of this
method to fill gaps for a total of N¼ 138 trials across 20
different subjects instrumented with the lower body
marker setup (Figure 2(a)), and N¼ 42 trials across 10
different subjects instrumented with the full body marker
setup (Figure 2(b)). The trials were filled with up to 4
iterations of gap-filling, and terminated early with a high
IK error threshold of 60mm.

3. Results

3.1. Reconstruction accuracy

The distribution of reconstruction errors across all
four trials is presented in Figure 3, which shows that

most frames are reconstructed with low error. The
mean reconstruction error was 0.88mm with a stand-
ard deviation of 4.0mm. A sample region with high
reconstruction error is presented in Figure 4, and
gives an example of a possible inaccurate reconstruc-
tion that the algorithm may generate. We observe,
however, that the reconstructed trajectory follows the
same overall trend as the original data.

3.2. Validity of IK error

The reconstruction error and IK error plotted in
Figure 5 have a Pearson’s correlation coefficient of
q ¼ 0:733, which was highly significant with p< 0.01,
indicating that reconstruction error and IK error are
strongly correlated. Since reconstruction error cannot
be obtained without having gap-less or perfectly filled
data in the first place, the strong correlation between
IK error and reconstruction error shows that IK error
can be used instead, and regions with high IK error
are also regions with high reconstruction error.

3.3. Comparison with manual Gap-Filling

The 18 filled trials had an average of 9105 frames and
792 gaps, with an average gap length of 5 frames, and
a maximum gap length of 326 frames. Comparing the
results of our method with data filled manually in
Vicon Nexus, we can see in Figure 6 that our method
finishes in much less time (80% decrease from
0.276 sec/frame to 0.056 sec/frame). For the IK error,
the mean of marker maximums was also lower with
our automated method (21% decrease from 69.4mm
to 54.6mm). The higher IK errors for the manually
filled data suggest that it was not reconstructed as
close to the true marker positions as the automatically
filled data, especially since this set of manually filled

Figure 3. Distribution of reconstruction error. Probability dens-
ity function of marker reconstruction from a filled with artifi-
cially-created gaps.
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data was not as thoroughly vetted as the data from
the previous sections. The average of all IK errors was
nearly the same between both (17.5mm for manual,
17.4mm for auto).

A Welch’s t-test on the results shows that the
decrease in processing time is highly significant
(p< 0.01), and that the decrease in the mean of max-
imum IK errors was also significant (p< 0.05), but
the difference in the mean of all IK errors was not
significant. In comparing the variances, we can see
that the variance in time taken is significantly less for
the iterative gap-filling method. (F-test of variances
p< 0.01), but there is no statistically significant differ-
ence in the variance of the mean of the maximum of
IK errors or the mean of all IK errors.

3.4. Error over iterations

The maximum IK error over four iterations is pre-
sented for the automated gap-filling of the entire data-
set. The trials had an average of 22370 frames and 3044
gaps, with an average gap length of 6 frames and a
maximum gap length of 3405 frames. The data for all
trials, as well as the mean across the different trials is
presented in Figure 7. The total IK error decreases sig-
nificantly with respect to the first iteration (47% drop
from 129.0mm to 67.6mm). Some trials show an
increase in the error between iterations, yet the general

trend is that the error will reduce in later iterations.
The trials that do diverge in error corresponded to tri-
als with especially inaccurate initial marker labels, or
had many regions with no marker labels at all.

The data used for this section had a total of 4,026,000
frames, and based on the results from section III.C, it
would take approximately 51.5 hours of continuous com-
puter processing to finish, or just over 2 days for one
computer. On the other hand, processing this data manu-
ally would have taken 309 total man-hours. A small team
of 5 people working 8hours per day would need almost
8 days to finish processing the data, further illustrating the
benefits of our automated gap-filling method.

Figure 4. Original and reconstructed marker trajectory of 59-
frame artificially-created gap. This is the longest gap created
and shows a trajectory reconstructed worse than average.

Figure 5. IK Error of automatically filled data vs. reconstruc-
tion error of automatically filled data. Reconstruction error was
calculated as the deviation between automatically filled data
and manually filled ground truth data.

Figure 6. Comparison of automated gap-filling and manual
gap-filling for processing time (left) mean of marker maximum
IK error (center), and mean of all IK errors (right). � represents
a significant difference of means, 8 represents a significant dif-
ference of variance (p< 0.05).
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4. Discussion

The results show that IK error is strongly correlated
with reconstruction error, indicating that IK error can
be used as a readily available metric to determine
where reconstructions are inaccurate and must be
corrected. Taking advantage of this correlation, the
proposed method of gap-filling is able to reconstruct
missing marker data to within a low average error,
indicating that our method of gap-filling is viable in
terms of reconstruction accuracy.

The feedback given from inverse kinematics (IK)
allows the gap-creation step to target regions with
high IK error so that they will be reduced between
iterations of gap-filling, causing the resulting fills to
be more accurate in later iterations. The error pre-
sented in the first iteration is from using only the
existing interpolation-based methods of gap-filling.
The errors in the later iterations include the gap cre-
ation step using the feedback from IK and are much
lower than the error in the first iteration, showing
that the iterative process is necessary for the error to
converge to a minimum. Although some trials show
an increase in the error between iterations, these
same trials also show a decrease in error afterwards,
suggesting that if more iterations were performed, the
error would continue to decrease. Based on these
results from the error comparison over iterations, we
can see that the iterative process is necessary for our
method to decrease the IK error.

Compared with manual gap-filling, our iterative
gap-filling method yields lower worst-case IK errors

due to the feedback given from IK, and can do so in
a significantly shorter period of time, indicating that
our method is useful to reduce the processing time. It
is important to note that this processing time is com-
putational only. Thus, our method removes the bur-
den of gap-filling manually by the user, virtually
eliminating the number of man-hours that must be
spent for the gap-filling process.

Although our algorithm takes advantage of existing
gap-filling methods, the high errors in the first iter-
ation of the process indicate that these methods are
not sufficient for producing quality data if the original
data is inaccurate. Our original contribution is found
in the next steps of the algorithm, where IK error, as
a metric of reconstruction accuracy, informs a gap
creation step, after which gaps can be filled again.
Our evaluations of the method reveal that it can serve
as a more accurate and efficient replacement for man-
ual gap-filling and can be easily implemented in exist-
ing processing pipelines, especially if MATLAB and
OpenSim are already in use.

One barrier to fully eliminating user effort in this
process is that the method requires an initial labeling of
the data; this could be expanded by using a labeling
approach such as the methods suggested by Maycock
et al. (XXXX), or Meyer et al. (2014). Such labeling
methods could be used in conjunction with our itera-
tive gap-filling method, and would also reduce the
impact of incorrect labels, leaving improper fills and
interference from other reflective objects as the primary
sources of invalid marker data. Such work in labeling
could be directly integrated with the code behind our
algorithm due to its open-source nature. Additionally,
biomechanics research groups have the ability to alter
various aspects of the algorithm to allow it to coordin-
ate with other processing steps.

5. Conclusion

The proposed method of iterative gap-filling allows
for completely automated and accurate reconstruction
of missing marker data without the requirement of
entirely accurate initial data due to the feedback given
by IK. It is capable of doing so in significantly lower
processing time, especially eliminating manual user
input and the use of graphical user interfaces. Thus,
our method has the potential to replace the manual
gap-filling and allow research requiring motion cap-
ture to be conducted much more quickly without sac-
rificing quality, by using feedback from IK to
determine and reduce the errors.

Figure 7. Mean of marker maximum IK error over iterations.
The method reduces the IK error for all trials evaluated, and
also yields an error lower than the average of manually
filled gaps.
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Further optimizations can be made to increase the
efficiency of the algorithm, namely to only perform
IK on the sections that were deleted and refilled since
those are the only regions that should show changes
in the IK errors. If additional data are available, the
gap-filling step of the iterative process could be
replaced with any other algorithm that completely fills
any missing trajectories, such as machine learning
methods or probabilistic methods, and the iterative
process with IK feedback can still be applied to valid-
ate and correct the resulting gap-filling. The algo-
rithm could also be improved by automatically
detecting when there is no improvement between iter-
ations and terminating early instead of continuing
until a maximum iteration limit is reached. As our
primary contribution is to show the benefits of an IK-
based validation, such improvements are beyond the
scope of this work. However, the method is released
as an open-source repository in the supplemental
material and at https://github.com/JonathanCamargo/
MoCapTools, so other biomechanics research groups
have the opportunity to expand on this work, should
the need arise.
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