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Abstract
This paper combines episodic learning and control barrier functions in the setting of bipedal lo-
comotion. The safety guarantees that control barrier functions provide are only valid with perfect
model knowledge; however, this assumption cannot be met on hardware platforms. To address this,
we utilize the notion of projection-to-state safety paired with a machine learning framework in an
attempt to learn the model uncertainty as it affects the barrier functions. The proposed approach is
demonstrated both in simulation and on hardware for the AMBER-3M bipedal robot in the context
of the stepping-stone problem, which requires precise foot placement while walking dynamically.
Keywords: bipedal locomotion, supervised learning, safety, control barrier functions

1. Introduction

Safety is of significant importance in many modern control applications, with complex systems de-
manding the rigorous encoding of safety properties in the controller design process. One particularly
challenging example is the safe locomotion of bipedal robots in difficult terrain; a concrete example
of this is the “stepping-stone problem” where the feet must be placed in precise locations. In prac-
tice, the models used to design safety-critical controllers are imperfect—especially in the context
of highly dynamic systems like walking robots—with model uncertainty arising due to parametric
error and unmodeled dynamics. This uncertainty can lead to unsafe or dangerous behavior, thus
requiring that safety-critical control be understood in the presence of model uncertainty.

In this work we consider a machine learning based approach for attenuating the impact of model
uncertainty on the safe behavior of a system. The application of learning to safety-critical control
of systems with uncertain models has recently exhibited significant success (Taylor et al., 2019b;
Cheng et al., 2019; Choi et al., 2020; Lee et al., 2020; Castañeda et al., 2020). We look to achieve
safety defined in terms of set invariance (Blanchini, 1999), which is an area of active research at the
intersection of data-driven methods and nonlinear control theory (Berkenkamp et al., 2016; Fisac
et al., 2018; Wang et al., 2018; Fan et al., 2019; Dean et al., 2020).

We will leverage control barrier functions (CBFs) for synthesizing safety controllers (Ames
et al., 2014a, 2017) that achieve set invariance. CBFs have become a popular method for ensuring
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safety (Nguyen and Sreenath, 2016; Wang et al., 2018), but they require an accurate model of the
system dynamics and model uncertainty can result in a loss of safety guarantees (Kolathaya and
Ames, 2018). Efforts have been made to make the safety guarantees of CBFs robust to the effects
of model uncertainty, but in doing so these methods can cause the system’s behavior to be overly
conservative (Gurriet et al., 2018; Xu et al., 2015; Taylor and Ames, 2020).

One challenge in incorporating learning methods with nonlinear control is the need for diverse
data capturing system behavior, and in particular the input-to-state relationship. While in simu-
lated environments it is possible to collect high coverage data sets that accurately determine how
inputs affect the evolution of the system, collecting such data on real physical systems may be
prohibitively costly or damaging to the system. The lack of this data can lead to challenges with
under-determination in supervised learning problems that seek to preserve the underlying structure
of dynamic systems (Taylor et al., 2019a,b). Often this leads to model fits with low training loss
that result in poor control performance when integrated in closed-loop controllers.

One setting for which collecting diverse data is infeasible is bipedal locomotion, as consistent
walking requires well defined input profiles to ensure stability (Grizzle et al., 2001). The stepping-
stone task is a historical benchmark for evaluating the safety-critical control of biped platforms
(Nguyen et al., 2016, 2018, 2020). As compared to the statically stable motion which has been suc-
cessfully employed to accomplish this task on a variety of legged robotic platforms (Griffin et al.,
2019; Fankhauser et al., 2018), the underactuated nature of the bipedal robot under consideration
in this work requires dynamic gaits to successfully traverse a set of stepping-stones. During such
dynamic motion, satisfaction of safety constraints is predicated on having accurate model informa-
tion, a requirement that cannot be met on hardware platforms, thus suggesting the need for model
uncertainty reduction via learning.

Our Contribution: The main contributions of this work are two-fold. First, we propose an
episodic learning framework for iteratively reducing the impact of disturbances on the safety-critical
behavior of a system. Compared to previous work, our method resolves challenges with input
data diversity by recursively defining disturbance estimators and controllers that are agnostic to
the underlying control-affine structure. We successfully deploy this method in the context of the
classical bipedal robotic stepping-stone problem. We validate that this method is able to effectively
reduce model uncertainty and improve the safe behavior of a complex system both in simulation
and experiment. The second contribution is the first experimental demonstration of CBFs for safety-
critical control on a bipedal robot. This challenge has been the focus of significant prior work and
we demonstrate that it can be achieved through the introduction of learning.

2. Background

In this section we provide a review of CBFs and projection-to-state safety (PSSf), which will be
utilized in Section 3 to formulate a learning approach for mitigating model uncertainty.

2.1. Safety via Control Barrier Functions

Consider the nonlinear control affine system given by:

ẋ = f(x) + g(x)u, (1)

where x ∈ Rn, u ∈ Rm, and f : Rn → Rn and g : Rn → Rn×m are locally Lipschitz continuous
on Rn. Given a Lipschitz continuous state-feedback controller k : Rn → Rm, the closed-loop
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system dynamics are:
ẋ = fcl(x) , f(x) + g(x)k(x). (2)

The assumption of local Lipschitz continuity of f , g, and k implies that fcl is locally Lipschitz
continuous. Thus, for any initial condition x0 := x(0) ∈ Rn there exists a maximum time interval
I(x0) = [0, tmax) such that x(t) is the unique solution to (2) on I(x0) (Perko, 2013). In the case
that fcl is forward complete, tmax =∞.

The notion of safety that we consider in this paper is formalized by specifying a safe set in the
state space that the system must remain in to be considered safe. In particular, consider a set C ⊂ Rn
defined as the 0-superlevel set of a continuously differentiable function h : Rn → R, yielding:

C , {x ∈ Rn : h(x) ≥ 0} , (3)

with ∂C , {x ∈ Rn : h(x) = 0} and Int(C) , {x ∈ Rn : h(x) > 0}. We assume that C is
nonempty and has no isolated points, that is, Int(C) 6= ∅ and Int(C) = C. We refer to C as the safe
set. This construction motivates the following definitions of forward invariance and safety:

Definition 1 (Forward Invariance & Safety) A set C ⊂ Rn is forward invariant if for every x0 ∈ C,
the solution x(t) to (2) satisfies x(t) ∈ C for all t ∈ I(x0). The system (2) is safe on the set C if the
set C is forward invariant.

Before defining CBFs, we denote a continuous function α : [0, a)→ R+, with a > 0, as classK
(α ∈ K) if α(0) = 0 and α is strictly monotonically increasing. If a =∞ and limr→∞ α(r) =∞,
then α is class K∞ (α ∈ K∞). A continuous function α : (−b, a) → R, with a, b > 0, is said
to belong to extended class K (α ∈ Ke) if α(0) = 0 and α is strictly monotonically increasing. If
a, b = ∞, limr→∞ α(r) = ∞, and limr→−∞ α(r) = −∞, then α is said to belong to extended
class K∞ (α ∈ K∞,e).

Certifying the safety of the closed-loop system (2) with respect to a set C may be impossible if
the controller k was not chosen to enforce the safety of C. CBFs can serve as a synthesis tool for
attaining the forward invariance, and thus the safety of a set:

Definition 2 (Control Barrier Function (CBF) (Ames et al., 2017)) Let C ⊂ Rn be the 0-superlevel
set of a continuously differentiable function h : Rn → R with 0 a regular value. The function h is a
control barrier function (CBF) for (1) on C if there exists α ∈ K∞,e such that for all x ∈ Rn:

sup
u∈Rm

ḣ(x,u) , ∇h(x) (f(x) + g(x)u) = Lfh(x) + Lgh(x)u ≥ −α(h(x)), (4)

where Lfh(x) and Lgh(x) are Lie derivatives.

Given a CBF h for (1) and a corresponding α ∈ K∞,e, we define the point-wise set of all control
values that satisfy (4):

Kcbf(x) ,
{

u ∈ Rm
∣∣∣ ḣ(x,u) ≥ −α(h(x))} .

We have the following result relating controllers taking values in Kcbf(x) to the safety of (1) on C:

Theorem 1 (Ames et al. (2014a)) Given a set C ⊂ Rn defined as the 0-superlevel set of a continu-
ously differentiable function h : Rn → R, if h is a CBF for (1) on C, then any Lipschitz continuous
controller k : Rn → Rm, such that k(x) ∈ Kcbf(x) for all x ∈ Rn, renders the system (1) safe with
respect to the set C.
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Given a nominal (but not necessarily safe) locally Lipschitz continuous controller kd : Rn → Rm,
a controller taking values in the set Kcbf(x) is the safety-critical CBF-QP:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (CBF-QP)

s.t. ḣ(x,u) ≥ −α(h(x)).

2.2. Model Uncertainty and Projection-to-State Safety

In practice, the system dynamics (1) are not known during control design due to parametric error
and unmodeled dynamics. Instead, a nominal model of the system is utilized:̂̇x = f̂(x) + ĝ(x)u, (5)

where f̂ : Rn → Rn and ĝ : Rn → Rn×m are assumed to be Lipschitz continuous on Rn. By
adding and subtracting the right hand side of (5) to (1), the dynamics of the system are:

ẋ = f̂(x) + ĝ(x)u +

d(x,u)︷ ︸︸ ︷
f(x)− f̂(x)︸ ︷︷ ︸

b(x)

+(g(x)− ĝ(x))︸ ︷︷ ︸
A(x)

u, (6)

where the unknown disturbance d(x,u) = b(x) + A(x)u is assumed to be time invariant, but
depends on the state and input to the system. If the function h : Rn → R is a CBF for the nominal
model (5) on C, the uncertainty in the dynamics directly manifests in the time derivative of h:

ḣ(x,u) = ∇h(x)(f̂(x) + ĝ(x)u)︸ ︷︷ ︸̂̇
h(x,u)

+∇h(x)b(x)︸ ︷︷ ︸
b(x)

+∇h(x)A(x)︸ ︷︷ ︸
a(x)>

u. (7)

Given that h is a CBF for (5) on C, let k : Rn → Rm be a Lipschitz continuous state-feedback

controller such that ̂̇h(x,k(x)) ≥ −α(h(x)). Defining the projected disturbance as:

δ(x) , ḣ(x,k(x))− ̂̇h(x,k(x)) = b(x) + a(x)>k(x), (8)

yields:
ḣ(x,k(x)) ≥ −α(h(x))− δ(x) (9)

Assuming that δ is essentially bounded in time (there exists M ∈ R, M > 0, such that |δ|∞ ,
ess supt≥0 |δ(x(t))| < M ), we may make use of the following definition:

Definition 3 (Projection-to-State Safety (PSSf) (Taylor et al. (2021))) Given a feedback controller
k, the closed-loop system (2), ẋ = fcl(x) = f̂(x)+ĝ(x)k(x)+d(x) with d(x) = b(x)+A(x)k(x),
is projection-to-state safe (PSSf) on C with respect to the function h and projected disturbances
δ : Rn → R if there exists δ > 0 and γ ∈ K∞ such that the set Cδ ⊃ C,

Cδ , {x ∈ Rn : h(x) + γ(|δ|∞) ≥ 0} , (10)

is forward invariant for all δ satisfying |δ|∞ ≤ δ.

PSSf captures the fact that in the presence of model uncertainty, satisfying the CBF condition

(4) for the estimated time derivative ̂̇h is not sufficient for safety, as the projected disturbance δ
appears in the lower bound on true time derivative of h as in (9). This results in a larger forward
invariant set, given by Cδ, that grows with the magnitude of the projected disturbance.
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Figure 1. Geometric visualization of Projection-to-State Safety. The system is able to leave the safe set C, but remains
within the larger set Cδ . Maximum possible deviation from the safe set grows larger with |δ|∞.

3. Learning Projected Disturbances

In this section we explore how an estimate of the projected disturbance δ can be learned episodically
from data and incorporated into control synthesis to improve PSSf behavior.

As seen in Section 2, the projected disturbance δ appears in the time derivative of the barrier
function ḣ, and potentially leads to unsafe behavior since it compromises the CBF condition as
in (9). If an upper bound δ on |δ|∞ is known (or determined heuristically), it could be directly
incorporated into the inequality enforced in the controller:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (δ-CBF-QP)

s.t.
̂̇
h(x,u)− δ ≥ −α(h(x)).

While this will enforce safety of the original set C, it can be exceedingly conservative if δ is larger
than the actual projected disturbance. Furthermore, as the projected disturbance is a function of
the state, its magnitude (and possibly sign) may change along a trajectory, leading to additional
conservativeness in this approach.

Instead, we consider a learning approach to resolve the impact of δ. To motivate such an ap-
proach, consider the following setting: in an experiment, the system is allowed to evolve forward
in time from a particular initial condition and under a given state-feedback controller. During this
experiment, data is collected which provides a discrete-time history of the CBF, h. This time history
is smoothed and numerically differentiated to compute an approximate time history of the true value
of the time derivative of the CBF, ḣ. This yields a collection of input-output pairs:

Di = ((xi,k(xi)), ḣi) ∈ (Rn × Rm)× R (11)

whereby a dataset D = {Di}Ni=1 can be constructed. Given a nonlinear function classH : Rn → R
and a loss function L : R×R→ R, a learning problem can be specified as finding a function δ̂ ∈ H
to estimate δ via empirical risk minimization:

inf
δ̂∈H

1

N

N∑
i=1

L
(̂̇
h(xi,k(xi)) + δ̂(xi), ḣi

)
. (ERM)

A controller can be synthesized which incorporates δ̂ as follows:

k(x) = argmin
u∈Rm

1

2
‖u− kd(x)‖22 (δ̂-CBF-QP)

s.t.
̂̇
h(x,u) + δ̂(x) ≥ −α(h(x)).
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Note that compared with CBF-QP, the extended safe set with δ̂-CBF-QP shrinks from (10) to Cδ ={
x ∈ Rn : h(x) + γ(|δ − δ̂|∞) ≥ 0

}
.

We directly build upon the episodic learning framework from (Taylor et al., 2019a,b) by seeking
to learn δ. Our approach is outlined in Algorithm 1. In each episode, the algorithm runs the current
controller to collect data, learns a new δ̂ using the newly collected data, and synthesizes a new con-
troller. In this prior work, which was applied to less complex dynamical systems, the collected data
was rich enough to determine a control affine structure. In many contexts, such as bipedal robots,
such a degree of diversity is infeasible without damaging the system. We instead directly learn δ as
a function of the previous controller k via a recursive relationship, as updating the estimator leads
to the definition of a new projected disturbance δ′ = b(x) + a(x)>k′(x). This yields a projected
disturbance δ learned iteratively by modifying δ̂ over the course of multiple episodes. This episodic
approach to safety-critical control is captured in Algorithm 1.

Algorithm 1 Projected Disturbance Learning (PDL)

input : CBF h, CBF derivative estimate ̂̇h, model classH, loss function L, nominal state-feedback
controller k0, number of episodes T , initial condition x0

output: Augmented Controller kT

for j = 1, . . . , T do
Dj ←experiment(x0,kj−1) // Execute experiment

δ̂ ←ERM(H,L,Dj ,
̂̇
h0) // Fit estimator̂̇

hj ← ̂̇
h0 + δ̂ // Update derivative estimator

kj ← δ̂-CBF-QP(̂̇hj) // Synthesize new controller

end

4. Bipedal Robotics

In this section we specify the notion of learning projected disturbances to the setting of bipedal
locomotion. We briefly introduce the theory of bipedal locomotion and then describe the barrier
function formulations which allow us to achieve safe bipedal locomotion across stepping-stones. A
deeper exploration of this material may be found in (Westervelt et al., 2003).

4.1. Bipedal Robotic Dynamics

The bipedal robotic system we consider is the AMBER-3M robotic platform seen in Figure 2,
modeled as an underactuated, planar five-link robot with point feet (Ambrose et al., 2017) whose
physical parameters are reported in (Ma et al., 2014, Table 1). The configuration coordinates q ∈
Q ⊂ R5 are given by q = [qsf , qsk, qsh, qnsh, qnsk]

>, with stance foot angle qsf , stance knee
angle qsk, stance hip angle qsh, non-stance hip angle qnsh and non-stance knee angle qnsk. The
continuous-time equations of motion, derived from the Euler-Lagrange equations, are given by:

D(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (12)

where D(q) ∈ S5++ is the positive definite mass-inertia matrix, C(q, q̇) ∈ R5×5 contains the cen-
trifugal and Coriolis forces, G(q) ∈ R5 contains the gravitational forces, B ∈ R5×4 is the actuation
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matrix, and u ∈ U ⊂ R4 is the input. Note that this is the pinned model of the robot dynamics; for
the unpinned model, refer to (Hereid et al., 2018). For AMBER-3M, the number of inputs is one
fewer than the degrees of freedom, meaning the system has one degree of underactuation.

Taking pv : Q → R to represent the vertical position (height) of the swing foot, the admissible
states are given by the domain D = {(q, q̇) ∈ TQ | pv(q) ≥ 0}. The switching surface on which
the impact events occur, also known as the guard, is defined by:

S = {(q, q̇) ∈ TQ | pv(q) = 0, ṗv(q, q̇) < 0} ⊂ D. (13)

With the full system state given by x = (q, q̇) ∈ TQ, the impact dynamics (Westervelt et al.,
2007) are defined by a reset map ∆ : S → D relating pre-impact states x−(t) , limτ↗t x(τ) and
post-impact states x+(t) = limτ↘t x(τ) via x+(t) = ∆(x−(t)). Combining these concepts and
rearranging (12) into control affine form yields the following hybrid control system:

HC =

{
ẋ = f(x) + g(x)u x− ∈ D \ S,
x+ = ∆(x−) x− ∈ S.

(14)

4.2. Bipedal Robotic Control

Control of bipedal robotic systems centers around a phasing variable, τ : Q → [0, 1], given by:

τ(q) =
δhip(q)− δ+hip
δ−hip − δ

+
hip

, (15)

where δhip : R5 → R defined as δhip(q) = [−lt − lf , −lf , 0, 0, 0]q is the linearized hip position
with lt and lf the length of the robots tibia and femur, respectively. The constants δ+hip and δ−hip
are the linearized hip positions at the beginning and the end of a step, ensuring that τ(q) increases
monotonically in time within a step. Desired trajectories resulting in walking gaits for the robot
can be rapidly synthesized via a hybrid zero dynamics framework (Westervelt et al. (2003); Ames
et al. (2014b)). We are now well equipped to define the relative degree 2 (Sastry (1999)) outputs
y : Q → R4 as the difference between the actual output ya and the desired output trajectory yd:

y(q,α) , ya(q)− yd(τ(q),α), (16)

with α being the coefficients of a Bézier polynomial coming from the trajectory generation step.
The actual output is given by the actuated coordinates: ya(q) =

[
04×1 I4×4

]
q. The nominal

controller for this system is then given by the proportional-derivative controller kd(x) = kPD(x) ,
−KPy(q)−KDẏ(q) with proportional gain KP ∈ S4++ and derivative gain KD ∈ S4++.

4.3. Control Barrier Functions for Stepping-Stones

The stepping-stone problem is captured through the use of virtual stepping-stones, which shrink
over the course of a step to confine foot placement to a safe region defined on a targeted stone
(Grandia et al., 2020). The CBFs used to specify these foot position constraints are given by:

h1(q) = R(τ(q))− (Ox − Fx(q)), (17)

h2(q) = R(τ(q)) + (Ox − Fx(q)), (18)

7
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Figure 2. (Left): Schematic diagram of the AMBER-3M robot with position coordinates. (Center): Schematic of the
foot placement in the stepping-stone problem. The boundaries of virtual stepping-stones are captured via the blue and
orange vertical lines. (Right): Virtual stepping stone width as function of the phase variable τ(q).

where Fx(q) is the horizontal position of the swing foot and Ox > 0 is the horizontal position of
the center of stepping-stone. The virtual stone width is given by the function R : R→ R:

R(τ(q)) =
ar − 1

1 + ar(e−m(τ(q)−1) − 1)
+ 1 + r (19)

where m > 0 determines the decay rate of the barrier function, (1 + a)r is half of the targeted
stone width, and 1 + r defines the half the width of the virtual stepping-stone when τ = 0. These
functions are visualized in Figure 2. The safety constraints can be interpreted as keeping the swing
foot horizontal position in an interval centered at the middle of the stepping-stone, where the interval
shrinks as τ increases. As this formulation of CBFs is position-based and therefore relative degree
two, we employ the exponential control barrier function (ECBF) extension technique (Nguyen and
Sreenath, 2016) to both CBFs to attain the relative degree 1 CBFs: he,i(x) , Lfhi(x) + αehi(q).

Combining the results in Section 3 and 4, with f̂ and ĝ the nominal model in (14), the final
Stepping Stone QP (SS-QP) controller combines the robustifying term of (δ̂-CBF-QP) with the
stepping-stone ECBF extensions of (17) and (18):

k(x) = argmin
u∈Rm

1

2
‖u− kPD(x)‖22 (SS-QP)

s.t. L2
f̂
h1(x) + LĝLf̂h1(x)u + αeLf̂h1(x) + δ̂1(x) ≥ −α(he,1(x)) (20)

L2
f̂
h2(x) + LĝLf̂h2(x)u + αeLf̂h2(x) + δ̂2(x) ≥ −α(he,2(x)). (21)

We assume that this (SS-QP) is feasible and we encountered no infeasibilities in simulation or
experimentation.

5. Simulation and Experimental Validation

In this section we apply our episodic learning framework (Algorithm 1) to the AMBER-3M platform
in both simulation with injected model uncertainty and on hardware with the model error inherent
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to real-world systems. In each instance the estimator δ̂ was implemented as a neural network with
two hidden layers of 50 hidden units using the ReLU activation function. The network was trained
minimizing mean absolute error using mini-batch gradient descent. Mean absolute error was chosen
over other loss functions for its robustness to outliers. The same controller (SS-QP) was deployed
in the RaiSim (Hwangbo et al., 2018) simulation environment and on the AMBER-3M hardware
platform, as seen in the supplementary video (vid). The complete learning code used in simulation
and experiments can be found at (git).

5.1. Simulation

The controllers and learning algorithm were first validated in simulation. Model error was intro-
duced by increasing the inertia of all limbs on the true model by a factor of ten while maintaining
constant mass. Due to the underactuated nature of the robot and the relationship between step length
and zero dynamics stability, not every set of stepping stones is navigable, even if safety is perfectly
enforced with respect to the CBFs. Therefore, a feasible stepping stone configuration was first gen-
erated for the robot to traverse with stones of 4 cm in width. Without knowledge of the modified
model (δ̂1(x) = δ̂2(x) = 0), the controller did not satisfy the CBF constraints (20-21), resulting in
a maximum violation at foot placement of 2.0 cm, causing the robot to miss the stepping stone and
fall over. Three episodes of the PDL algorithm were run, after which the maximum violation was
reduced to be 0.3 cm, only 15% of the original violation. Additionally, the δ-CBF-QP controller
was implemented, which ensured safety but resulted in extremely conservative behavior, resulting
in poor qualitative walking, i.e. harsh foot strikes and an over-bending torso. A comparison of the
barrier functions h1 and h2 over the steps with these controllers can be seen in Figure 3.

Figure 3. Simulation (S) and Hardware (H) data where model mismatch causes violations. (Far-Left): Simulation where
the barrier functions h1 (solid blue) and h2 (solid orange) are enforced via a CBF-QP. The δ-CBF-QP is also shown
for δ1 (dashed blue) and δ2 (dashed orange), which results in more conservative behavior over many steps. (Mid-Left):
After three episodes of learning the SS-QP in simulation, the maximum barrier violation decreases from 2.0 to 0.3 cm.
(Mid-Right): Hardware where the barrier functions h1 (blue) and h2 (orange) enforced via a CBF-QP. (Far-Right):
After two episodes of learning on hardware, the maximum barrier violation decreases from 9.2 to 1.9 cm via the SS-QP.
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Figure 4. Gait tiles for Episode 2 of learning showing the AMBER-3M robot safely traversing a set of stepping stones.
Notice the change in step width and added lean of the torso induced by the barrier functions.

5.2. Hardware

The same nominal model for the robot was used in the hardware experiments as in simulation, with
model uncertainty presenting itself as significant friction in the joints, as well as imperfect mass
and inertia measurements. The PDL algorithm was implemented on the AMBER-3M robot across a
sequence of two episodes. The controllers ran on an off-board i7-6700HQ CPU @ 2.6GHz with 16
GB RAM, which computed desired torques and communicated them with the ELMO motor drivers
on the 137 cm tall, 22 kg robot. The motor driver communication ran at 2kHz, and the SS-QP ran at
1kHz. The stepping stone configuration was specified to the controller with stones of 8 cm in width.
As with simulation, the CBF-QP resulted in a maximum violation of the barriers of 9.2 cm due
to model error. After running the PDL algorithm for two episodes, the maximum violation of the
barriers was 1.9 cm, only 21% of the original violation, as depicted in Figure 3. Although learning
improves our estimate of the safe set size, as discussed in Section 3, there is still uncertainty in the
stone size. This was accommodated by utilizing physical stones which were 10 cm in width. The
7.3 cm reduction in stone size mismatch captures the change from |δ|∞ to |δ − δ̂|∞. Gait tiles for
this improved traversal of the stepping stones are shown in Figure 4.

6. Conclusion

In this paper we presented an episodic learning approach for reducing the impact of model un-
certainty on safety-critical control using control barrier functions. Our method is able to learn a
projected disturbance and incorporate the learned model information into an optimization-based
controller, as demonstrated in both a high-fidelity simulation and on the AMBER-3M robot hard-
ware platform. Future work includes theoretical analysis of the convergence properties of Algorithm
1, modification of the controller to ensure trajectories remain close to previously-seen data points
to reduce the effects of generalization error, and an extension to three dimensional bipedal walking
with vision sensing for stepping-stone identification.
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