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Abstract— Safe navigation of cluttered environments is a
critical challenge in robotics. It is typically approached by
separating the planning and tracking problems, with planning
executed on a reduced order model to generate reference trajec-
tories, and control techniques used to track these trajectories on
the full order dynamics. Inevitable tracking error necessitates
robustification of the nominal plan to ensure safety; in many
cases, this is accomplished via worst-case bounding, which
ignores the fact that some trajectories of the planning model
may be easier to track than others. In this work, we present a
novel method leveraging massively parallel simulation to learn
a dynamic tube representation, which characterizes tracking
performance as a function of actions taken by the planning
model. Planning model trajectories are then optimized such
that the dynamic tube lies in the free space, allowing a balance
between performance and safety to be traded off in real time.
The resulting Dynamic Tube MPC is applied to the 3D hopping
robot ARCHER, enabling agile and performant navigation
of cluttered environments, and safe collision-free traversal of
narrow corridors.

I. INTRODUCTION

Safe autonomous navigation of cluttered environments is
a challenging problem for robotic systems. Issues including
non-convexity of the traversible environment, complexities
of a robot’s full-order dynamics, and the desire to simulta-
neously achieve dynamic and safe behaviors during execu-
tion motivate hierarchical solutions to this problem. Typical
approaches decompose the problem into a planning layer,
operating on a simplified model to find a collision-free (safe)
path through the environment, and a tracking layer, which
takes in the plan and produces control inputs to track it as
accurately as possible on the full order system.

When decomposed in this way, the primary issue of
interest becomes certifying how well the tracking controller
can track plans, as error between the two systems can cause
unsafe behaviors, i.e., collisions, if not accounted for prop-
erly. Most commonly, robotic practitioners will simply add
a conservative, ad-hoc safety margin to the planning system;
however significant work has been performed to develop
theoretically grounded, less conservative methods. By setting
up a pursuit-evasion game between the tracking and planning
models, FasTrack leverages numerical solutions to the HJB
PDE to identify a tracking error bound, which upper bounds
the deviation between the two models [1]. For systems
of specific structure (for instance, feedback linearizability),
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Fig. 1. ARCHER plans a collision-free path through a cluttered environ-
ment by jointly optimizing a path on a reduced order model and a dynamic
tube, whose dynamics are learned from simulation data. The obstacles are
tightly approximated by circles and buffered by the radius of the robot.

ISS Lyapunov functions can be identified, whose level-sets
are forward invariant and thus give a tracking error bound
[2], and input-to-state safe (ISSf) control barrier functions
(CBFs) can be utilized with the reduced order dynamics to
ensure safety [3] (see [4], [5] for recent surveys). In the case
where a Lyapunov function cannot be identified analytically,
a space of functions can be parameterized and searched, for
instance via sum-of-squares programming [6] or learning [7],
[8]. This problem has also been treated in the language of
simulation functions [9], [10], and contraction theory [11].

Once a tracking invariant has been established, the nav-
igation problem is simplified, and now requires finding a
path for the planning model which, when buffered by the
tracking invariant, is collision free. Tube Model Predictive
Control (Tube MPC) solves this problem by minimizing
a cost function while ensuring the tube-buffered trajectory
lies in the free space [12], [13]. While computationally
intensive, Tube MPC has been implemented in real-time
to control several hardware systems, including [14], [15].
A notable drawback of Tube MPC formulations is that the
fixed, worst case tubes can be quite conservative; to mitigate
this, Planning Fast and Slow introduces a meta-planner to
select what planning model (and thus tube size) to use
depending on the environment [16]. Dynamic Tube MPC
offers further flexibility by allowing tube sizes to vary with
control decisions, as demonstrated through implementations
with sliding mode control [17] and learned tube dynamics
[18]. Alternatively, stochastic methods can be used to char-
acterize dynamics uncertainty. Methods either rely on the
mean and variance [19], [20], or the tail probabilities [21],



[22], [23] to plan paths which are highly likely to be collision
free. Building on [18]’s use of quantile regression for tube
learning, our approach significantly increases the available
training data, incorporates error history information for more
accurate tube prediction, and achieves real-time performance
on a complex hardware platform.

A recent trend in robotics has been to leverage massively
parallel simulation to learn desired behaviors through sig-
nificant environmental interaction. Reinforcement learning,
at the center of this approach, has seen significant success,
including work in drones [24], legged robotics [25], and
bipeds [26]. Recent work has even used parallel simulation
for online planning [27]. While learning has been used in the
past to generate certificates for dynamical systems, including
Lyapunov/barrier functions, [7], [28], [29], reachable sets
[8], and stabilizing policies, [30], there is an opportunity to
extend these learning based certification schemes to signifi-
cantly more complex and high dimensional environments by
leveraging massively parallel simulation.

In this paper, we focus on the critical insight that for many
systems, tracking performance varies with the signal being
tracked. Very aggressive trajectories are difficult to track,
resulting in large error bounds, while conservative trajecto-
ries can be tracked more closely. Informed by this concept,
we learn a dynamic error tube that associates a planning
model trajectory with a corresponding tube, within which
the tracking model is expected to remain while following
the trajectory. We condition the tube on a history of tracking
errors, and demonstrate significant tube accuracy gains with
increasing history length. Once the tube dynamics have been
learned, we formulate a Dynamic Tube MPC problem, which
optimizes trajectories of the planning model such that the
dynamic tube remains in the free space.

Dynamic Tube MPC is deployed to control the 3D hopping
robot ARCHER to safely navigate cluttered environments.
We demonstrate problems in which fixed-size tube MPC
leads to either infeasibility or highly conservative behavior,
and demonstrate that our Dynamic Tube MPC achieves both
performance and safety. Fig. 1 shows ARCHER running
Dynamic Tube MPC in real time to dynamically and safely
navigate a cluttered environment.

II. PRELIMINARIES

In this section, we introduce the mathematical concepts
and nomenclature to be used throughout the paper. Discrete
time variables will be indexed via subscript (i.e. xk), and
sequences will be indicated via colon notation, xi:j =
{xi,xi+1, . . . ,xj−1}. We begin by defining the tracking and
planning models, which form the foundation of our approach.

A. Tracking and Planning Models

Considering a system with nx states and mx inputs, with
discrete dynamics governed by:

xk+1 = fx(xk,uk) (1)

where xk ∈ X ≜ Rnx is the system state, uk ∈ U ≜ Rmx

the system input, fx : X × U → X the tracking dynamics,

and k ∈ Z indexes time step. Note that while many robotic
systems are naturally described by differential equations, we
consider discrete time systems as they will be amenable to
both the learning problem and the planning problem. For our
purposes, these can be the discretized version of continuous
dynamics (for instance, as discretized by a simulator).

To facilitate planning, we also define a planning model,
with nz < nx states and mz < mx inputs,

zk+1 = fz(zk,vk) (2)

where zk ∈ Z ≜ Rnz is the planning state, vk ∈ V ⊂
Rmz the planning input, and fz : Z × V → Z the planning
dynamics. Additionally, we consider a tracking controller k :
X × Z × V → U , which selects control inputs for the full
order system to track the planning system.

The planning dynamics should include all states relevant to
the planning problem; for instance, in a collision avoidance
problem, the planning model should contain at least the
position states, as these are relevant to the constraints. To
this end, we define a projection operation Πz : X → Z ,
which takes the tracking system state and projects it onto
the planning model. From this, we can define the planning
model error e : X × Z → R≥0:

ek(xk, zk) = ∥zk −Πz(xk)∥ (3)

More general definitions of the error can be taken; ours
parameterizes the error as a scalar, and leads to spherical
tubes for ease of planning (see Section III-B). Other param-
eterizations, for instance hypercubes or ellipsoids, lead to
different structures of the planning problem.

Finally, we introduce the tube size, wk ∈ R≥0. A dynamic
tube is a sequence of tube sizes {wj}; we define the tube
to be correct when the closed loop execution of the full
order model tracking the planning model yields wk ≥ ek,
i.e. the tracking system remains with the tube centered about
the planning model. Ultimately, we will be concerned with
learning tube dynamics, which will predict future tube sizes
from a history of relevant data.

B. Nominal MPC for Planning

In the absence of tracking error, we can consider a nominal
planning problem. Consider a environment with free space
(collision-free subset of the planning model state space)
denoted C ⊂ Z . For a given initial condition zi, goal state
zg , and cost functional J : ZN+1×VN → R≥0, the nominal
MPC problem is then given:

minimize
v(·), z(·)

J(z(·),v(·)) (4a)

subject to

zj+1 = fz(zj ,vj) j ∈ [0, N − 1], (4b)
z0 = zi, (4c)
vj ∈ V j ∈ [0, N − 1], (4d)
zj ∈ C j ∈ [0, N ] (4e)

where N ∈ Z>0 is the length of the planning horizon.
Under appropriate selection of the cost function, solving this



problem in closed loop by applying the first input in the
solution trajectory and then resolving the MPC problem will
result in stability of the closed loop system to the goal [31].

C. Application to ARCHER

The ARCHER 3D hopping robot, shown in Fig. 1, is the
primary hardware focus of this paper. Stabilizing controllers
for ARCHER have been previously studied [32], [33]. The
system contains nx = 16 states x = [p⊤ q⊤ v⊤ ω⊤ θ̇⊤]⊤,
where p ∈ R3 is the global position, q ∈ S3 a unit quaternion
defining orientation, v ∈ R3 the linear velocity, ω ∈ s3 the
angular velocity, and θ̇ ∈ R3 the velocities of the flywheels.
The system takes mx = 3 inputs, the torques applied to each
of the flywheels. The foot subsystem is autonomous, and not
considered in the design of our controllers; the foot spring is
compressed to a preset distance during the flight phase, and
released during the ground phase to maintain approximately
constant hop height. More details regarding the hardware can
be found here [33]. The system dynamics fx will simply be
steps of the robot in a given simulator.

In this work we will plan trajectories for the hopper using a
two dimensional single integrator with zk ∈ R2 the positions
and vk ∈ V ⊂ R2 the velocities, which will be bounded to lie
in a symmetric range, −v̄ ≤ vk ≤ v̄, where v̄ ∈ R≥0 is the
velocity bound. The projection operator will simply return
the x and y positions of the hopper, Πz(xk) = [px,k py,k]

⊤.
The tracking controller used for ARCHER in this work

will be a Raibert Heuristic [34]. Given a set of gains
kp, kd, kf ≥ 0, and clipping parameters, cp, cv, cf , ca ≥ 0
we compute the desired roll, ϕd, and pitch, γd, as:

ep = clip (z−Πz(x), cp) (5a)
ev = clip (−Πv(x), cv) (5b)
ef = clip (v, cf ) (5c)

[ϕd, −γd]
⊤ = clip (−kpep − kdev + kfef , ca) (5d)

where Πv : X → R2 projects the hopper state to its x and
y velocity coordinates. The clipping operations prevent large
errors from requesting too large of orientations, which lead to
falling. Finally, geometrically consistent PD control is used
to track the desired orientation as outlined in [33].

III. METHODS

Our approach consists of two primary components: learn-
ing a dynamic representation of an error tube that character-
izes the how tracking error bounds depend upon trajectories
of the planning model, and employing Dynamic Tube MPC
to plan collision-free paths within these bounds. This section
details each of these components.

A. Learning Tube Dynamics

The primary goal of this work is to characterize how the
actions taken by the planning model effect the size of the
tracking invariant established by the tracking controller. To
this end, consider the following problem. Take any feasible
trajectory of the planning model, covering a length of at least
H+N time steps, where H ∈ Z≥0 is the history considered

by the model, and N ∈ Z>0 the horizon for the planning
problem). Assume the full order system has been tracking
the planning model for at least H time steps. Then at the
current time k, we can compute the a history of tracking
error as ek−H:k by applying (3) at each of the time steps.
Now, given the state and input trajectory of the planning
model, {zj}k+N

j=k , {vj}k+N
j=k , we would like to predict the

tube, {wj}k+N
j=k , such that wj ≥ ej at each point along the

trajectory when executing the tracking controller in closed
loop. We consider two methods of prediction:

• One-Shot Tube Dynamics:

wk:k+N = fw,os(ek−H:k, zk−H:k+N ,vk−H:k+N ) (6)

This predicts the tube size over the horizon as a single
function of the error history and planning trajectory.

• Recursive Tube Dynamics:

wj+1 = fw,rec(ẽj−H:j , zj−H:j ,vj−H,j , j) (7)

ẽj−H:j =

{
[ej−H:k wk:k+H−j ] j < k +H

wj−H:j j ≥ k +H

This is applied recursively from j = k to j = k +
N , predicting the next tube size as a function of the
history of tube sizes and planning trajectory. Critically,
for indices of ẽj−H:j up to k, we will use the error
history, while after k we use the tube prediction. For
this reason, j is also passed to the function, as this
will help distinguish how much of ẽ is error history as
opposed to tube predictions.

To learn the tube dynamics, we utilize massively parallel
simulation to collect a large dataset of the form D =
{z0:N̄+1,v0:N̄ ,Πz(x0:N̄+1)}, with N̄ the length of each
trajectory in the dataset. The inputs to the planning model
are randomly generated1 and the planning model and tracking
model initial conditions are sampled from an initial condition
sets, z0 ∼ Z0 ⊂ Z , and x0 ∼ X0(z0) ⊂ X .

The tube dynamics are represented by a neural network,
fθ
w, with parameters θ. To train the model, as in [18], inspired

by quantile regression [21], we use a check loss function:

w(θ) = fθ
w(ek−H:k, zk−H:k+N ,vk−H:k+N ) (8a)

e = ∥zk:k+N −Πz(xk:k+N )∥ (8b)

r(θ) =

{
α(w(θ)− e) w(θ) ≥ e

(1− α)(e−w(θ)) w(θ) < e
(8c)

L(θ) = Huber(∥r(θ)∥1) (8d)

Given an index k, we evaluate the loss over the horizon
length N on which the model predicts. (8a) evaluates the tube
model (either recursive or one-shot) over the entire horizon.
(8b) then evaluates the tracking error over the horizon. (8c)
implements the check loss, where the w ≥ e condition holds
when the tube prediction is correct, and incentives the tube
to be tight around the error (by decreasing tube size). The

1The distribution of trajectories matters when deploying the tube model
in an MPC problem, as discussed in Section V-A. See code [35] for
implementation details.



Fig. 2. Analysis of the impact of history, H , on tube prediction accuracy; tube dynamics are trained on the hopper dynamics for several values of H .
(Left) Evaluation on a 20% holdout from training data, Mean Error when Correct is plotted against history length. (Middle) a portion of a square trajectory
is executed in IsaacGym on ARCHER. (Right) The error signal, ek , is plotted in black, with the tube predictions, wk , plotted at three points in time,
k = 25, 75, 145 over a horizon of N = 50 nodes (right pane). We see short horizon models being both overly conservative and violating the error tube.

w < e conditional holds when the tube is incorrect, and
incentivizes increasing the tube size. Since the output of (8c)
is a vector (of length N ), we apply a Huber loss [36] to the
L1 penalty for a smooth penalty landscape.

The choice of the parameter α is directly related to the
level of robustness achieved by the tube. Previous work
[18] has demonstrated that minimizing the check loss (8c)
corresponds to finding at tube which is an α-quantile repre-
sentation of the error dynamics; the tube is expected to be
correct an α proportion of the time.

B. Dynamic Tube MPC

Given a dynamic tube model fθ
w, which maps an error

history and planning model trajectory to a tube prediction
(either via one-shot or recursive application), we can formu-
late the Dynamic Tube MPC problem as a variant of (4):

minimize
v(·), z(·)

J(z(·),v(·)) (9a)

subject to

zj+1 = fz(zj ,vj) j ∈ [0, N − 1], (9b)

w0:N= fθ
w(e -H:0, z -H:N ,v -H:N ), (9c)

z0 = zi, (9d)
vj ∈ V j ∈ [0, N − 1], (9e)

Bwj
(zj) ∈ C j ∈ [0, N ] (9f)

where Br(z) is a ball of radius r centered at z. The tube
dynamics are enforced via (9c), and safety is enforced by
(9f). Dynamic Tube MPC aims to minimize the given cost
function while ensuring that the planned trajectory, when
buffered by the error tube, remains within the free space.

In this work, we will consider circular obstacles, which
can be encoded as a single constraint, such that the Dy-
namic Tube MPC problem can be formulated as a nonlinear
program (NLP). Given the i’th obstacle, centered at zc,i with
radius ri, the safety constraint (9f) can be expressed:

(zj − zc,i)
⊤(zj − zc,i)− (wj + ri)

2 ≥ 0 (10)

For closed loop control, we apply the first input in the Dy-
namic Tube MPC solution, then recompute the solution, with
the next initial condition as the current state of the planning
model. Note that this differs from some implementations of
Tube MPC, where the projection of the tracking system must

be within the tube around the initial condition; we avoid this
constraint, as it significantly complicates the interpretation
and implementation of the error history, eH:0.

IV. ANALYSIS

A critical differentiating factor between our method and
previous ones, i.e. [18], is the incorporation of an error his-
tory, ẽ in (7), in the tube prediction. We analyse the impacts
of the this error history on the size of the learned tube.
Additionally, we highlight the improvements of Dynamic
Tube MPC over classical tube MPC approaches.

A. Effect of Error History on Tube Size

Including a longer error history leads to reductions in
the size of the learned tube. To demonstrate this, we train
tube dynamics models with histories ranging from H = 1
to H = 50, with α = 0.9, and predict on a horizon of
length N = 50. On a 20% held out validation set, all
models predict tubes which are correct at least 90% of the
time, matching expectations from the check loss (8c). The
primary metric used to quantify the size of a tube is Mean
Error When Correct (MEC); given the errors, e0:N , and
tube predictions, w0:N , the tube is correct on an index set
Ic = {i ∈ 0, . . . , N | wi ≥ ei}. The MEC is then

MEC =
1

|Ic|
∑
i∈Ic

wi − ei (11)

Note each element of this sum is non-negative, as we sum
only over indices where the tube is correct. When the MEC
is small, the tube tightly approximates the actual error,
while when it is large, the tube over-approximates the error
significantly. In Fig. 2 (left) we see that increasing H leads
to reduction in the MEC. For large H , these returns diminish.
Additionally, we note that the one-shot models tend to out-
preform the recursive models at each history length, with this
gap closing as H increases.

To further demonstrate this idea, we consider a case where
the planning model executes part of a square, as shown
in Fig. 2 (middle) by the black line. The hopper, when
tracking this trajectory in simulation, incurs error, as shown
by the magenta line. In Fig. 2 (right), we see three time
steps, where the recursive tube predictions are evaluated, for
various history lengths of the model. As an overall trend,



Fig. 3. Three Tube MPC variants, on a problem where the hopper must
traverse a narrow gap. (Top) Tube MPC, where the tube size is fixed to
be the 90% quantile in a dataset collected with v̄ = 0.2m/s. (Middle)
Tube MPC, where the tube size is fixed to the 90% quantile, in a dataset
collected with v̄ = 0.04m/s. (Bottom) Dynamic Tube MPC using recursive
tube dynamics, which simultaneously achieves performance and safety.

we see that the short horizon models tend to be significantly
more conservative than the long history models; additionally,
the long history models seem to capture the shape of the
error trajectory much more precisely. In the third set of tube
predictions, we see a case where the short-horizon models
under-approximate the resulting error, while the long horizon
models retain solid performance.

The trends in Fig. 2 show a strong incentive to use longer
error histories when predicting tube size, ideally H ≥ 25
for this setup on ARCHER; however, performance levels off
beyond a certain point. The incorporation of the error history
is critical, as it allows the model to discriminate between
states which have the same instantaneous error (for instance
where the error may be increasing or decreasing, leading to
very different tubes). We can draw parallels to ideas from
filtering; the history of errors and planning trajectories gives
the neural network the necessary information to learn a filter
of the salient full order model states, and use these to more
accurately predict tube sizes over the horizon. Beyond a
certain point, including a longer history does not improve
the quality of this implicit filter.

B. Dynamic Tube MPC

When employed in the Dynamic Tube MPC, the learned
tube representation allows the optimizer to trade off aggres-
sive behaviors and conservative behaviors when necessary
to ensure safety. Fig. 3 demonstrates a critical benefit of
Dynamic Tube MPC over a fixed size Tube MPC. A problem
is set up for the hopper to traverse a narrow gap; the top
and middle panes demonstrate solution of this problem with

a fixed tube size, while the bottom pane demonstrates the
effectiveness of a recursive dynamic tube, trained on a dataset
with v̄ = 0.2m/s. For the top plot, the tube size is the 90%
quantile of the errors in the dataset used to train the tube dy-
namics (we do this as computation of a true robust invariant
is quite difficult, and the quantile allows better comparison
to the learned tube, which also uses quantile bounding). For
this tube size, the planning model cannot reach the goal. In
order to reach the goal with a fixed tube size, we are forced
to limit the planning model to v̄ = 0.04m/s; collecting a
dataset with these tightened input bounds, the 90% quantile
bound fixed tube allows a very conservative solution to the
problem, solving in around 400 nodes (40 seconds). The
dynamic tube MPC travels quite quickly when away from
the obstacles (note the slope of the state plot), while slowing
to a speed similar to the conservative solution while between
the obstacles. This allows a much more aggressive trajectory,
solving the problem in only 200 Nodes (20 seconds). The
ability to dynamically vary the aggressiveness of the planning
model allows the system to balance performance with safety,
and generates robust and performant behaviors difficult to
achieve via other methods.

V. APPLICATION OF DYNAMIC TUBE MPC TO ARCHER

We deploy our Dynamic Tube MPC method on the
ARCHER platform to generate collision free trajectories in
cluttered environments, in real time.

A. Learning Tube Dynamics

We follow the tube learning process outlined in Section III-
A, simulating the hopper with 8192 units in parallel in
IsaacGym [37]. We collect a dataset consisting of 409,600
trajectories, each of length 20 seconds, under random inputs
to the planning model. To avoid excessive distribution shift
when deploying the learned tube in MPC, we did significant
work to shape the random inputs such that the planning
trajectories share characteristics with the solutions from
MPC; this is detailed in the code [35]. Additionally, to
facilitate transfer onto the hardware system, we implement
domain randomization, inspired by results in RL [25], [38].
The ARCHER platform’s tracking performance is extremely
sensitive to the location of the center of mass, so we
randomize this parameter within 5mm, as well as several
other physical parameters of the robot (stiffness, damping,
inertia, ect.). The domain randomization makes the tubes
more conservative, improving the transfer to hardware. We
choose a history of H = 25, a horizon of N = 25, and an
error quantile of α = 0.9. Training is conducted in PyTorch
[39], using neural networks with two layers of 128 nodes,
and Softplus (β = 5) activations, as these result in smooth
networks which are easier than ReLU to optimize through in
MPC. We choose a recursive tube representation; while the
one-shot tube representation was more accurate, empirically
the recursive tube yielded much smoother tube predictions,
and was easier to optimize through, leading to more desirable
closed loop behavior in the Dynamic Tube MPC. When
training the recursive models, we stop gradients on the w



Fig. 4. Implementation of Dynamic Tube MPC on the ARCHER platform. Plotted are closed loop planned trajectory and tube (white), along with tracking
performance (red), along with tube, state, and input trajectories over time. Note specifically how the planning model slows down when in narrow corridors
between obstacles to improve tracking.

components of ẽ from (7), as these terms depend on θ; this
stabilizes training by localizing gradient information.

B. Dynamic Tube MPC

Due to optimizing through the neural network constraint
(9c), some extra effort is required to obtain smooth solutions
at real-time rates to the dynamic tube MPC problem. For our
nominal problem (4), we choose quadratic costs on the state
and input. Defining the distance to the goal as ek = zk−zg ,
with q, r, qf > 0, the cost functional is:

J(z(·),v(·)) = qfe
⊤
k ek +

N−1∑
j=0

qe⊤k ek + rv⊤
k vk (12)

In order to improve solutions to the Dynamic Tube MPC
problem, (9), we first solve the nominal problem. Let z̄k, v̄k

be the solution to this problem; then the cost function for the
full problem is defined as distance to the nominal problem
solution. Additionally, to incentivize smooth inputs, we place
a penalty on the input rate; putting these together, we have:

ez,k = zk − z̄k (13a)
ev,k = vk − v̄k (13b)
δv,k = vk − vk−1 (13c)

J(z(·),v(·)) =

N−1∑
k=0

qe⊤z,kez,k + re⊤v,kev,k (13d)

+ qfe
⊤
z,Nez,N +

N−1∑
k=1

rrδ
⊤
v,kδv,k

where (13a) and (13b) compute deviation from the nominal
solution, and (13c) penalizes the input rate.

The MPC problem is solved in CasADi [40] via SNOPT
[41], with the neural network constraint implemented via
L4CasADi [42], [43]. We successfully deploy our algorithm
on the ARCHER hardware in a number of experimental
trials. To achieve real time rates, we allow the first Dy-
namic Tube MPC solve to run to convergence, and then

limit SNOPT to four SQP iterations per solve. Under these
conditions, the Dynamic Tube MPC solves at 10Hz, which
matches the dt = 0.1 of the planning model.

C. Results
Fig. 4 shows two experimental trials. In the bottom exper-

iment, ARCHER is asked to navigate a straight line through
a tight gap; we see the planning model operate at maximum
speed, then slow to near zero speed which traversing the
narrow gap, to ensure precise tracking, and finally speeding
up again once free of the obstacles. In the top, similar
behavior is observed, where high speeds are used when the
robot is not confined between obstacles, and speeds drop
in the narrow corridors. Critically, none of these maneuvers
would have been possible with a classic Robust Tube MPC
implementation, without setting the velocity limit v̄ on the
planning model very low.

D. Limitations
The main limitation of this work is that the training data

and evaluation data come from different distributions, as
training data is random. We carefully craft our randomized
training trajectories to minimize effects of this distribution
shift. This could be dramatically improved by solving plan-
ning problems in the training data collection, similar to [18],
using a parallelizable planning method, such as [27].

VI. CONCLUSION

We proposed a method leveraging massively parallel sim-
ulation to learn a dynamic representation of a tracking error
tube. We demonstrate that including a tracking error history
in the tube dynamics dramatically improves prediction accu-
racy. We formulated a dynamic tube MPC, which optimized
trajectories of the planning model such that the resulting
dynamic tube lies in the free space, allowing real-time
trade-offs between performant and conservative behaviors
to ensure safety. We deploy this method on the ARCHER
platform, achieving agile and collision free navigation of
cluttered environments.
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