
Nonlinear Model Predictive Control of a 3D Hopping Robot:
Leveraging Lie Group Integrators for Dynamically Stable Behaviors

Noel Csomay-Shanklin, Victor D. Dorobantu, and Aaron D. Ames

Abstract— Achieving stable hopping has been a hallmark
challenge in the field of dynamic legged locomotion. Controlled
hopping is notably difficult due to extended periods of un-
deractuation combined with very short ground phases wherein
ground interactions must be modulated to regulate global state.
In this work, we explore the use of hybrid nonlinear model
predictive control paired with a low-level feedback controller
in a multi-rate hierarchy to achieve dynamically stable motions
on a 3D hopping robot. In order to demonstrate richer
behaviors on the manifold of rotations, both the planning and
feedback layers must be designed in a geometrically consistent
fashion; therefore, we develop the necessary tools to employ
Lie group integrators and appropriate feedback controllers.
We experimentally demonstrate stable 3D hopping, as well as
trajectory tracking and flipping in simulation.

I. INTRODUCTION

Hopping has been a benchmark challenge in the field of
robotic locomotion dating back to the seminal work of Marc
Raibert in the 1980’s [1]. The lessons learned during hopping
have inspired generations of researchers, and have enabled
complex behaviors such as walking and running on bipedal
[2]–[4] and quadrupedal robots [5], [6]. Since the original
work of Raibert, the landscape of control has changed
dramatically, and has recently been fueled by advances
in computation power allowing for previously prohibitively
costly methodologies to be employed in real-time on robotic
platforms. The goal of this work is to investigate the extent
to which this new modern computation can be leveraged in
the context of the canonical example of hopping.

The control of hopping robots is particularly challenging
due to intermittent continuous and discrete dynamics, periods
of extreme underactuation, and exceptionally short ground
phases during which the robot can apply forces to regu-
late its global position. These pose unique difficulties for
conventional control algorithms, and necessitate the ability
to decide control actions based on predictions of where
the robot will be in the future. Raibert addressed these
challenges through the use of reduced order models, e.g.,
the spring loaded inverted pendulum (SLIP) model [7], which
has since proven effective in walking and running generation
on bipedal robots [8]. Besides the work of Raibert, many
methods have been developed to stabilize hopping robots
[9], including reinforcement learning based approaches [10],
[11], nonholonomic motion planning [12], a mix of offline
and online hierarchical motion planning strategies [13], [14],

This research was supported by NSF Graduate Research Fellowship No.
DGE-1745301 and Raytheon, Beyond Limits, JPL RTD 1643049.

Authors are with the Department of Computing and Mathematical Sci-
ences, California Institute of Technology, Pasadena, CA 91125.

Fig. 1: Nonlinear MPC running in real-time on the 3D robot
ARCHER [17], demonstrating hopping on hardware.

and model predictive control of simplified models [15], [16].
Compared to the abundance of work that exists for planar
hopping robots, the literature for the control of 3D hopping
robots is comparatively sparse.

Recently, model predictive control (MPC) [18] has been
used effectively for the control of dynamic robotic systems,
including hybrid systems (systems with continuous dynamics
and discrete impacts [19]) like legged robots [20]–[22]. MPC
has been brought into the realm of real-time dynamic robotic
control due to modern computing power and increased algo-
rithmic efficiency [23]; however, the implementation of MPC
on hardware platforms, as well as theoretical justifications
of its performance for nonlinear systems remains an active
area of research. As nonlinear MPC is predicated on taking
local approximations of system dynamics, its success heavily
relies on correctly constructing these approximations and
remaining within the regions in which they are valid.

When the system states are manifold-valued, these lo-
cal approximations must be carefully constructed. We will
specifically be concerned with Lie groups, groups with
smooth manifold structure whose operator and inverse are
also smooth (see [24], [25]), as they are often used in the
field of robotics to model the space of orientations. Lie
groups have additionally been studied from the perspectives
of discrete mechanics [26] and numerical analysis [27], [28].
The estimation of robotic systems on Lie groups was outlined
in [29], and the control of legged robotic systems on Lie
groups has recently been investigated in [30]. Finally, the
application of optimal control techniques over differentiable
manifolds to the control of hybrid systems was explored in
[31] with experimental results achieved in [32], [33].

The goal of this work is to experimentally realize dynamic
hopping behaviors on a 3D hopping robot through the use of

ar
X

iv
:2

20
9.

11
80

8v
4

 [
cs

.R
O

]
 6

 J
un

 2
02

3

https://youtu.be/0XMxluC_Gs8

nonlinear MPC. To this end, we: (1) develop a framework for
hybrid nonlinear MPC in a geometrically consistent fashion
via Lie group integrators, and (2) experimentally demonstrate
on a 3D robot that MPC is an effective tool for accomplishing
highly dynamic behaviors such as hopping.

Theoretically, we consider both the manifold structure of
the configuration space and the hybrid nature of the dynamics
(Sec. II), wherein an MPC problem is synthesized through
the use of sequential linearizations that leverage Lie group
and Lie algebra structures (Sec. III). The MPC problem is
translated to hardware via a multi-rate control paradigm. To
experimentally verify this framework (Sec. IV), we leverage
a newly built hardware platform: ARCHER [17] (which
builds upon earlier generations of hopping robots [34]–[36]).
This robot has three reaction wheels for attitude control,
and one motor connected via a rope to control foot spring
compression. We first show the capabilities of this robot
in a high-fidelity simulation wherein a variety of dynamic
motions are demonstrated: from path following to flipping.
Finally, we experimentally realize sustained 3D hopping on
this new hardware platform, marking the first demonstration
of 3D hopping using online motion planning strategies.

II. PRELIMINARIES

A. Hybrid System Dynamics

The configuration of the hopping robot is given by q =
(p, q,θ, ℓ) ∈ Q, where p ∈ R3 is the Cartesian position,
q ∈ S3 is the unit quaternion representing the orientation,
θ ∈ R3 represents the flywheel angles, and ℓ ∈ R is the foot
deflection. Next, let v = (ṗ,ω, θ̇, ℓ̇) ∈ V ≜ R3×s3×R3×R,
where ω ∈ s3 is a purely imaginary quaternion representing
the angular rate of the body. The complete robot state can
then be written as x = (q,v) ∈ X ≜ Q× V .

Hopping consists of alternating sequences of continuous
and discrete dynamics; therefore, it is naturally modeled as a
hybrid system. Two distinct continuous phases of dynamics
exist, the flight phase f when the robot is in the air, and the
ground phase g when the foot is contacting the floor. We can
construct a directed graph with vertices v ∈ V ≜ {f, g} and
edges e ∈ E ≜ {f → g, g → f} to characterize how the
robot traverses the hybrid modes, as shown in Figure 2.

For each vertex v ∈ V , let Dv ⊂ X represent the
admissible domain in which the system state evolves, and
nv denote the number of holonomic constraints restricting
the motion of the robot. Note that nf = 0, and ng = 3,
which pin the foot to the ground. Omitting the details for
manifold value variables (which can be found in [37]), let
Jv : Q → Rnv×n denote the Jacobian of the holonomic
constraints where n = |Q|. We can define the dynamics as:

D(q)q̈+H(q, q̇) = Bu+ J⊤
v (q)λv,

J̇v(q, q̇)q̇+ Jv(q)q̈ = 0.

where D : Q → Rn×n is the mass-inertia matrix, H : X →
Rn contains the Coriolis and gravity terms, B ∈ Rn×m is the
actuation matrix, u ∈ Rm is the control input, and λv ∈ Rnv

are the Lagrange variables describing the constraint forces.

Fig. 2: The robot traversing the various hybrid domains.

These equations can be rearranged and forces λv solved for
in order to produce the constraint implicit dynamics:

ẋ = fv(x,u), (1)

where fv : X × Rm → R2n is of control-affine form.
Each hybrid transition e ∈ E occurs when the system state

intersects the guard, defined as:

Sf = {x ∈ Df : pz(q) = 0, ṗz(x) < 0} e = f → g,

Sg = {x ∈ Dg : ℓ = 0, ℓ̇ < 0} e = g → f,

where pz : Q → R returns the vertical position of the foot.
For an edge e = v1 → v2, upon striking the guard Sv1 the
system undergoes a discrete jump in states as described by:

x+ = ∆e(x
−),

where ∆e : Sv1 → Dv2 is the reset map describing the
momentum transfer though impact, and x− ∈ Dv1 and
x+ ∈ Dv2 are the pre and post-impact states, respectively.
Collecting the various objects D = {Dv}v∈V , S = {Sv}v∈V ,
∆ = {∆e}e∈E and F = {fv}v∈V , we can describe the
hybrid control system of the hopping robot via the tuple:

HC = (V,E,D,S,∆, F).

B. Lie Group Integrators

In this section, we focus our attention to the orientation
coordinates of the robot and discuss how to perform one form
of Lie group integration. We represent the orientation of a
rigid body via a unit quaternion q ∈ S3 = {q ∈ H : |q| =
1}; quaternionic representations of orientation have been
extensively explored in attitude control of spacecrafts [38],
[39]. As opposed to Euler angles, quaternions do not suffer
from issues of singularities, and provide a straightforward
interpolation method – this will be helpful when construct-
ing continuous-time signals from the discrete points that
MPC produces. Importantly, quaternions and their associated
quaternion multiplication define a Lie group structure on S3.
The angular rate of the body is given by an element of the
associated Lie algebra ω ∈ s3, the tangent space of S3 at
the identity element qE , the elements of which are purely
imaginary quaternions.

Fig. 3: A depiction of Lie groups, Lie algebras, and the log operation. a) The trajectory qk, b) pulling the trajectory back
to the identity element via q−1

0 , and c) taking the log map near identity to obtain elements in the Lie algebra.

The time rate of change of a unit quaternion at a point q is
given by an element of the tangent space at q, i.e. q̇ ∈ TqS

3.
Given the angular rate of the body ω, we can calculate q̇ as:

q̇ = qω, (2)

using standard quaternion multiplication. The formulation (2)
is possible since the tangent map of left multiplication by
a quaternion is also given by left multiplication, mapping
from the Lie algebra to the tangent space at q.1 Integrating
equation (2) results in:

q(t) = q(0) exp(ω(t)) (3)

where exp : s3 → S3 is termed the exponential map and
maps elements of the Lie algebra s3 back to the Lie group
S3. This map is injective for imaginary quaternions with
magnitude less than π; over this neighborhood, the inverse
map is denoted as log : S3 → s3. If instead of directly
integrating we take a Lie-Euler step, (3) becomes:

qk+1 = qk exp(ωkh) (4)

for a (small) time step h ∈ R. This is a simple example of
a Lie group integrator.

III. GEOMETRIC MPC AND MULTI-RATE CONTROL

A. Linearized Dynamics

In order to avoid the nonlinearity present in (4), we
propose the following change of coordinates:

ξk = log(q−1
0 qk), (5)

which first pulls the variables back to the vicinity of qε, and
then to the Lie algebra as shown in Figure 3. Substituting in
the Lie-Euler step from (4) into the above expression for the
first few values of k, we have:

ξ0 = 0

ξ1 = log(q−1
0 q1) = log(q−1

0 q0 exp(ω0h))

= ω0h

ξ2 = log(q−1
0 q2) = log(q−1

0 q1 exp(ω1h))

= log(q−1
0 q0 exp(ω0h) exp(ω1h))

= ω0h+ ω1h+
1

2
[ω0h,ω1h] +O(h3)

1Often, the equation (2) is reported as q̇ = 1
2
qω. This is because the

isomorphism between ω ∈ s3 and R3 is given by ϕ(ω) = 1
2
ω if the

generators of s3 are taken to be the canonical basis of imaginary 3-vectors,
which arises from the fact that the action of quaternions parameterized by
a rotation angle θ on vectors rotates them by an angle of 2θ.

where [·, ·] represents the Lie bracket, the last line follows
from the Campbell-Baker-Hausdorff theorem [40], and the
higher order terms consist of linear combinations of iterated
Lie brackets, which due to linearity are multiplied by terms
of h3 or higher2. This means that, neglecting terms of O(h2)
or higher, we are able to write our dynamics update law as:

ξk+1 =

k∑
i=0

ωkh = ξk + ωkh,

which is linear and will therefore be straightforward to
include in the MPC program.

The next challenge concerns the construction of local
approximations of the acceleration dynamics. As most of
the coordinates lie in Euclidean space and therefore have
straightforward Taylor approximations, we will limit our
attention on the manifold valued variables. Specifically, in a
continuous domain v consider a function f : S3×s3×Rm →
s3 satisfying:

ω̇ = f(q,ω,u).

Given a perturbation η ∈ s3, a local representation of f in
exponential coordinates f̃ : S3 × s3 × Rm × s3 → R3 can
be defined as:

f̃(q,ω,u,η) ≜ f(q exp(η),ω,u).

Given q ∈ S3, ω ∈ s3, and u ∈ Rm, as well as additional
perturbations ∆ω ∈ R3 and ∆u ∈ Rm, we can compute
a Taylor expansion of f̃ about the point (q,ω,u,0) at a
perturbed point (q,ω +∆ω,u+∆u,η) via:

f(q exp(η),ω +∆ω,u+∆u)

≈ f(q,ω,u) +
∂f̃

∂η
· η +

∂f

∂ω
·∆ω +

∂f

∂u
·∆u.

Then, we can write the continuous-time linearized dynamics
of ω about the point (q,ω,u) as:

d

dt
δω =

∂f̃

∂η
(q,ω,u,0) · η +

∂f

∂ω
· δω +

∂f

∂u
· δu. (6)

Next, we consider the dynamics of the variables ξk around
a reference trajectory q̄k ∈ S3, ω̄k ∈ s3, and ūk ∈ Rm.
Define ξ̄k = log(q̄−1

0 q̄k) with ξ̄0 = 0 and suppose the
reference trajectory satisfies the Lie-Euler step, i.e.:

ξ̄k+1 = ξ̄k + ω̄kh.

2If quaternion multiplication commuted, then the iterated Lie brackets
would be zero – but alas, no such pleasantries exist.

For a trajectory ξk ∈ s3 similarly satisfying the Lie-Euler
step, and vectors ωk ∈ s3, and uk ∈ Rm, we have:

(ξk+1−ξ̄k+1) = (ξk−ξ̄k)+(ωk−ω̄k)h+ξ̄k + ω̄kh− ξ̄k+1︸ ︷︷ ︸
=0

,

yielding continuous-time linearized dynamics:

d

dt
δξ = δω. (7)

Combining expressions (6) and (7), we obtain:

d

dt

[
δξ
δω

]
=

[
0 I

∂f̃
∂η (q,ω,u,0) ∂f

∂ω

]
︸ ︷︷ ︸

A

[
δξ
δω

]
+

[
0
∂f
∂u

]
︸ ︷︷ ︸

B

δu. (8)

We can similarly construct local approximations of the
impact maps. On an edge e, consider a function ∆ : S → s3

which satisfies:
ω+ = ∆(q−,ω−). (9)

Here, S represents the guard as a submanifold of S3 × s3

(though the guard is actually a submanifold of Q). As
defined, this reset map is the restriction of the momentum
transfer of the system at impact to the guard. Therefore,
we can naturally extend the domain of the reset map by
considering the same momentum transfer applied anywhere
in the state space, yielding ∆ext : S3 × s3 → s3. This
is needed because in our Talyor expansion of the discrete
dynamics, we consider perturbations of the full system state
(not just perturbations tangent to the guard)3. As before, we
can locally approximate the function ∆ext via:

∆ext(q
− exp(η),ω− +∆ω−) ≈ ∆ext(q

−,ω−)

+
∂∆̃ext

∂η
(q−,ω−,0) · η +

∂∆ext

∂ω− ·∆ω−,

where again we can represent ∆ext locally as:

∆̃ext(q
−,ω−,η) ≜ ∆ext(q

− exp(η),ω−).

Noting that the q+ = q−, we can represent the linearization
of the discrete map as:[

δξ+

δω+

]
=

[
I 0

∂∆̃ext

∂η (q−,ω−,0) ∂∆ext

∂ω−

]
︸ ︷︷ ︸

D

[
δξ−

δω−

]
. (10)

B. Geometric Model Predictive Control

This section represents the mid-level of the control hier-
archy, as shown in Figure 4. High level target base positions
pref ∈ R3 are provided by the user, and MPC produces ref-
erence trajectories to pass to the low level. This architecture
maintains the benefit of having a horizon and is paired with a
low level feedback controller which adds robustness to model
error and delays induced by computation time.

For a given MPC horizon N ∈ N, we begin by con-
structing a vertex sequence vk ∈ V for k = 0, . . . , N − 1
describing the continuous modes that the robot will be in

3This extension allows us to abscond from having to only consider
perturbations along the guard, which is an interesting area of future work.

Fig. 4: The multi-rate architecture employed for the robot.

at various points along the horizon. These are defined a
priori by estimating the time to impact of the robot. We
also construct a sequence of ek = vk → vk+1 ∈ E ∪ {0},
where ek = 0 if no discrete transition is expected. Consider
a discrete (manifold valued) state trajectory x̄k and input
trajectory ūk. We introduce the variables:

z̄k = (p̄k, ξ̄k, θ̄k, ℓ̄k, v̄k) ∈ R20,

with ξ̄k defined as in (5), and whereby zk will represent our
decision variables in the MPC program. At each index k,
compute the linearizations of the dynamics in the vertex vk:

żk = Avkzk +Bvk
uk

+ fvk
(x̄k, ūk)−Avk z̄k −Bvk ūk︸ ︷︷ ︸

≜Cvk

, (11)

where the qk and ωk elements are linearized as in (8), the
Euclidean elements are linearized in the standard way. From
(11), we can produce a discrete-time linear system over a
time interval h ∈ R>0 by taking an Euler step (in Euclidean
space), or by using the matrix exponential in R20×20 to
produce the discrete time dynamics:

zk+1 = Ad
vk
zk +Bd

vk
uk +Cd

vk
, (12)

z+k = Dekz
−
k +∆ek(x̄

−
k)−Dek z̄k︸ ︷︷ ︸
≜Eek

. (13)

We now introduce the finite-time optimal control problem
(FTOCP), i.e., the geometric model predictive controller:

min
uk,zk

N−1∑
k=0

(zk − zref)
⊤Q(zk − zref) + u⊤

k Ruk + z⊤NVzN

s.t. zk+1 = Ad
vk
zk +Bd

vk
uk +Cd

vk
, if ek = 0 (14a)

zk+1 = Dekzk +Eek , if ek ̸= 0 (14b)
z0 = z(t), (14c)
uk ∈ U (14d)

where Q ∈ S2n>0 and R ∈ S2n>0 are symmetric, positive
definite state and input gain matrices, respectively, V ∈ S2n>0

is a quadratic approximation of the cost-to-go, U is an input
constraint set, and where the initial condition ξ0 = 0 is
enforced, as previously discussed. The above optimal control
problem is solved in an SQP fashion, where the solution from
the previous iteration is used to produce the linearizations
for the next. Specifically, we can take (z̄k, ūk) = (z∗k,u

∗
k)

where the asterisk indicates the optimal solution, and x̄k can
be produced from z̄k via inverting (5).

Fig. 5: The planned elements q ∈ S3 and ω ∈ s3, as well
as the low level feedback controller. The multi-rate nature of
the methodology can be seen in the difference of time scales
between when MPC produces trajectories and when the low
level controller updates.

C. Quaternionic Feedback

Once MPC produces a solution, a desired trajectory and
feedforward input can be produced as:

qd(τ) = q̄0 exp(ξ
∗
1), ωd(τ) = ω∗

1, uff(τ) = u∗
0,

for τ ∈ [0, dt) ⊂ R. An interesting area of future work
is using the MPC signals to produce dynamically admissible
trajectories in the inter-MPC times, but this was not explored
due to communication bandwidth limitations. The FTOCP is
implemented in a receding horizon fashion, where the low
level controller only ever receives the first control input and
desired trajectory.

Given the measured quaternion qa, measured angular rate
ωa, desired quaternion qd, and desired angular rate ωd of
the robot, we can construct our actuation as:

u(x, t) = −KpIm(qd(t)
−1qa)−Kd(ωa − ωd(t)) + uff(t),

where Kp,Kd ∈ S3>0 are positive definite gain matrices.
The product qd(t)

−1qa represents a “difference” between
elements of S3; if qa is in a small neighborhood of qd, then
the product is in a small neighborhood of the identity element
qE . The map Im : S3 → s3 takes the purely imaginary
component of the error signal, and can be viewed as the
Euclidean projection of the Lie group onto the Lie algebra,
allowing us to base the control input over a vector valued
error. Alternatively, the log operation could be used instead
of Im, but the Im operator was empirically found to work
more reliably.

Fig. 6: (Above) Positions and velocities of the robot tracking
a global reference setpoint in simulation. Note the planning
through hybrid events and constant velocity in flight phase
due to underactuation. (Below) Two reference trajectories.

IV. IMPLEMENTATION AND RESULTS

A. Hardware

The ARCHER [17] hardware platform consists of three
KV115 T-Motors with 250 g flywheel masses attached for
orientation control, and one U10-plus T-Motor attached to
a 3-1 gear reduction to the foot via a cable and pulley
system. The robot is powered by two 6 cell LiPo betteries
connected in series, which can supply up to 50.8 V at over
100 A of current to the four ELMO Gold Solo Twitter motor
controllers. The robot has two on-board Arduino Teensy
microcontrollers for the low level feedback control, which
run at 1kHz and communicate over WiFi via an ESP module
to a desktop running the mid-level controller.

The MPC program runs at 100 Hz on an Ubuntu 20.04
machine with AMD Ryzen 5950x @ 3.4 GHz and 64 Gb
RAM. The Pinocchio C++ library [23] is used, specifically
the pinocchio3 preview branch, to produce fast evaluation
of the system dynamics (constrained, unconstrained, contin-
uous, and discrete), as well as their associated Jacobians, and
the manif C++ library [29] is used to handle all Lie group
operations (such as log and exp). As seen in Figure 5 as well

Fig. 7: Dynamic motions explored in simulation, including flipping (above) and disturbance rejection (below).

as the supplemental video [41], the robot was successfully
able to hop stably in place, demonstrating the first instance
of 3D hopping using online motion planning.

B. Simulation

In order to thoroughly test the method, the torque limits
of the robot were increased in a Mujoco [42] simulation
environment from 1.5 Nm to 15 Nm. First, the tracking of
various global reference signals, including a square and a
Lissajous trajectory, were evaluated as seen in Figure 6. Note
the constant global velocity in the flight phase due to the lack
of control inputs when the robot is in the air. As such, the
robot must carefully plan its interactions with the ground in
order to track the desired reference signals. Specifically, it
is interesting to see how MPC is implicitly able to control
the actuated coordinates of the robot in order to stabilize
the underactuated ones. Also note the discontinuities in the
MPC planned trajectories around the impact events due to
the hybrid nature of the system dynamics. Next, disturbance
rejection and more dynamic maneuvers like flipping were
tested on the system, as seen in the accompanying video [41]
and Figure 7. Due to the geometrically consistent structure
of the planning algorithm, the robot is able to explore a
variety of states on its orientation manifold, and exhibits
exceptional robustness to disturbances. Note that the torque
limitations, but not limitations of the methodology, prohibit
such demonstrations on the hardware platform.

C. Implementation Details

The complete list of parameters used in the MPC pro-
gram are detailed in Table I. There is an inherent tradeoff
between tracking global position and maintaining a vertical
orientation – as such the associated gains need to be appropri-
ately tuned. To avoid adding a nonlinear and mixed integer
constraint in to the optimization program, the impact time

TABLE I: MPC parameters

Horizon Length 20 SQP Iterations 2
p Weight 10 v Weight 1
q Weight 10 ω Weight 0.01
u Weight 0.001 umax 1.5 Nm
Kp Roll/Pitch Gain 120 Kd Roll/Pitch Gain 4
Kp Yaw Gain 15 Kd Yaw Gain 1
dtflight 0.01 dtground 0.001

was calculated as though the hopper was exactly vertical via
solving for the ballistic trajectory in the z-direction. As the
spring dynamics add significant stiffness to the optimization
problem, the foot torque was set to zero in the optimizer,
and instead the MPC program plans as though it is a passive
degree of freedom. Instead, the low level controller runs
its own feedback controller to regulate foot compression
between impact events. As the dynamics of the ground phase
are more challenging than the flight phase, the system was
discretized more finely in that domain. This means that the
lookahead time shrank whenever impact came into view
in the horizon, as the horizon length was kept constant.
We found that using the matrix exponential instead of the
Euclidean Euler step aided in performance, likely due to
the reduced one step prediction error. Finally, the quadratic
approximation of the cost to go was simply taken to be Q.
The complete code can be found at [43].

V. CONCLUSION AND FUTURE WORK

In this work, we demonstrated that predictive control is
successfully able to regulate the underactuated coordinates
of a 3D hopping robot through intelligent control of the
actuated states. Through the use of geometrically consistent
model predictive control and feedback layers, we were
able to achieve stable hopping on hardware, and trajectory
tracking and flipping in simulation. Future work includes
providing theoretical justification of why predictive control
is able to regulate the underactuated coordinates of robotic
systems, as well as a proof of state and input constraint
satisfaction in continuous time for underactuated systems.
On the hardware side, planning with constrained footholds,
incorporating friction cone constraints, and the inclusion of
a high level decision making layer will be investigated.

VI. ACKNOWLEDGEMENTS

The authors would like to especially thank Eric Ambrose
for providing us with such a well-built hardware platform,
and for supporting our low-level controller implementation
efforts. We would also like to sincerely thank Igor Sadalski,
as well as Sergio Esteban and Adrian Boedtker Ghansah for
their help with simulation and hardware implementation, and
Will Compton for his experimental assistance.

REFERENCES

[1] M. H. Raibert, H. B. Brown, and M. Chepponis, “Experiments in
Balance with a 3D One-Legged Hopping Machine,” The International
Journal of Robotics Research, vol. 3, no. 2, pp. 75–92, Jun.
1984, publisher: SAGE Publications Ltd STM. [Online]. Available:
https://doi.org/10.1177/027836498400300207

[2] M. H. Raibert, H. B. Brown, M. Chepponis, J. Koechling, and J. K.
Hocigins, “Dynamically Stable Legged Locomotion,” p. 207.

[3] B. Dadashzadeh, H. R. Vejdani, and J. Hurst, “From template to
anchor: A novel control strategy for spring-mass running of bipedal
robots,” in 2014 IEEE/RSJ International Conference on Intelligent
Robots and Systems, Sep. 2014, pp. 2566–2571, iSSN: 2153-0866.

[4] J. Reher and A. D. Ames, “Dynamic Walking: Toward Agile and
Efficient Bipedal Robots,” Annual Review of Control, Robotics, and
Autonomous Systems, vol. 4, no. 1, pp. 535–572, May 2021.

[5] I. Poulakakis, J. A. Smith, and M. Buehler, “Modeling and
Experiments of Untethered Quadrupedal Running with a Bounding
Gait: The Scout II Robot,” The International Journal of Robotics
Research, vol. 24, no. 4, pp. 239–256, Apr. 2005. [Online]. Available:
http://journals.sagepub.com/doi/10.1177/0278364904050917

[6] H.-W. Park, P. M. Wensing, and S. Kim, “High-speed bounding
with the MIT Cheetah 2: Control design and experiments,” The
International Journal of Robotics Research, vol. 36, no. 2, pp.
167–192, Feb. 2017. [Online]. Available: http://journals.sagepub.com/
doi/10.1177/0278364917694244

[7] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg behavior
explains basic dynamics of walking and running,” Proceedings. Bio.
sciences / The Royal Society, vol. 273, pp. 2861–7, Dec. 2006.

[8] C. Hubicki, J. Grimes, M. Jones, D. Renjewski, A. Spröwitz, A. Abate,
and J. Hurst, “ATRIAS: Design and validation of a tether-free 3D-
capable spring-mass bipedal robot,” The International Journal of
Robotics Research, vol. 35, no. 12, pp. 1497–1521, Oct. 2016.

[9] A. Sayyad, B. Seth, and P. Seshu, “Single-legged hopping robotics
research—A review,” Robotica, vol. 25, no. 5, pp. 587–613, Sep.
2007. [Online]. Available: https://www.cambridge.org/core/product/
identifier/S0263574707003487/type/journal article

[10] R. Tedrake and H. S. Seung, “Improved Dynamic Stability Using
Reinforcement Learning.”

[11] K. Maier, “Neural network based control of legged hopping systems,”
in Proceeding of the 2001 IEEE International Symposium on Intelli-
gent Control (ISIC ’01) (Cat. No.01CH37206), Sep. 2001, pp. 115–
120, iSSN: 2158-9860.

[12] R. Murray and S. Sastry, “Steering nonholonomic systems using
sinusoids,” in 29th IEEE Conference on Decision and Control, Dec.
1990, pp. 2097–2101 vol.4.

[13] G. Zeglin and B. Brown, “Control of a bow leg hopping robot,” in
Proceedings. 1998 IEEE International Conference on Robotics and
Automation (Cat. No.98CH36146), vol. 1. Leuven, Belgium: IEEE,
1998, pp. 793–798.

[14] J. Albro and J. Bobrow, “Optimal motion primitives for a 5 DOF
experimental hopper,” in Proceedings 2001 ICRA. IEEE International
Conference on Robotics and Automation (Cat. No.01CH37164), vol. 4,
May 2001, pp. 3630–3635 vol.4, iSSN: 1050-4729.

[15] A. Zamani and P. A. Bhounsule, “Nonlinear model predictive control
of hopping model using approximate step-to-step models for naviga-
tion on complex terrain,” in 2020 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), Oct. 2020, pp. 3627–3632,
iSSN: 2153-0866.

[16] M. Rutschmann, B. Satzinger, M. Byl, and K. Byl, “Nonlinear model
predictive control for rough-terrain robot hopping,” in 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, Oct. 2012,
pp. 1859–1864, iSSN: 2153-0866.

[17] E. R. Ambrose, “Creating ARCHER: A 3D Hopping Robot with
Flywheels for Attitude Control,” phd, Caltech, 2022.

[18] F. Borrelli, A. Bemporad, and M. Morari, “Predictive Control for
Linear and Hybrid Systems,” Jun. 2017.

[19] J. W. Grizzle, C. Chevallereau, R. W. Sinnet, and A. D. Ames,
“Models, feedback control, and open problems of 3D bipedal robotic
walking,” Automatica, vol. 50, no. 8, pp. 1955–1988, Aug. 2014.

[20] M. Y. Galliker, N. Csomay-Shanklin, R. Grandia, A. J. Taylor,
F. Farshidian, M. Hutter, and A. D. Ames, “Bipedal Locomotion with
Nonlinear Model Predictive Control: Online Gait Generation using
Whole-Body Dynamics,” Mar. 2022, arXiv:2203.07429 [cs].

[21] F. Farshidian, E. Jelavic, A. Satapathy, M. Giftthaler, and J. Buchli,
“Real-time motion planning of legged robots: A model predictive
control approach,” in 2017 IEEE-RAS 17th International Humanoids
Conference, Nov. 2017, pp. 577–584, iSSN: 2164-0580.

[22] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive
Control,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Oct. 2018, pp. 1–9, iSSN: 2153-0866.

[23] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The Pinocchio C++ library : A fast and
flexible implementation of rigid body dynamics algorithms and their
analytical derivatives,” in 2019 IEEE/SICE International Symposium
on System Integration (SII), Jan. 2019, pp. 614–619, iSSN: 2474-2325.

[24] E. Celledoni, H. Marthinsen, and B. Owren, “An introduction to lie
group integrators–basics, new developments and applications,” Journal
of Computational Physics, vol. 257, pp. 1040–1061, 2014.

[25] M. Kobilarov, K. Crane, and M. Desbrun, “Lie group integrators for
animation and control of vehicles,” ACM transactions on Graphics
(TOG), vol. 28, no. 2, pp. 1–14, 2009.

[26] O. Junge, J. E. Marsden, and S. Ober-Blöbaum, “Discrete mechanics
and optimal control,” IFAC Proceedings Volumes, vol. 38, no. 1, pp.
538–543, 2005.

[27] A. Iserles, H. Z. Munthe-Kaas, S. P. Nørsett, and A. Zanna, “Lie-group
methods,” Acta numerica, vol. 9, pp. 215–365, 2000.

[28] E. Hairer, M. Hochbruck, A. Iserles, and C. Lubich, “Geometric
numerical integration,” Oberwolfach Reports, vol. 3, pp. 805–882,
2006.

[29] J. Solà, J. Deray, and D. Atchuthan, “A micro Lie theory for state
estimation in robotics,” Dec. 2021, arXiv:1812.01537 [cs].

[30] S. Teng, D. Chen, W. Clark, and M. Ghaffari, “An Error-State Model
Predictive Control on Connected Matrix Lie Groups for Legged Robot
Control,” Mar. 2022, arXiv:2203.08728 [cs, eess].

[31] C. Mastalli, R. Budhiraja, W. Merkt, G. Saurel, B. Hammoud,
M. Naveau, J. Carpentier, L. Righetti, S. Vijayakumar, and
N. Mansard, “Crocoddyl: An Efficient and Versatile Framework for
Multi-Contact Optimal Control,” in IEEE International Conference on
Robotics and Automation (ICRA), 2020.

[32] C. Mastalli, W. Merkt, J. Marti-Saumell, H. Ferrolho, J. Solà,
N. Mansard, and S. Vijayakumar, “A feasibility-driven approach
to control-limited DDP,” Autonomous Robots, vol. 46, no. 8, pp.
985–1005, Dec. 2022. [Online]. Available: https://doi.org/10.1007/
s10514-022-10061-w

[33] C. Mastalli, S. P. Chhatoi, T. Corbères, S. Tonneau, and
S. Vijayakumar, “Inverse-Dynamics MPC via Nullspace Resolution,”
Jan. 2023, arXiv:2209.053 75 [cs, eess]. [Online]. Available:
http://arxiv.org/abs/2209.05375

[34] E. Ambrose, W.-L. Ma, and A. D. Ames, “Towards the Unification of
System Design and Motion Synthesis for High-Performance Hopping
Robots,” in 2021 IEEE International Conference on Robotics and
Automation (ICRA), May 2021, pp. 7073–7078, iSSN: 2577-087X.

[35] E. Ambrose and A. D. Ames, “Improved Performance on Moving-
Mass Hopping Robots with Parallel Elasticity,” in 2020 IEEE Inter-
national Conference on Robotics and Automation (ICRA), May 2020,
pp. 2457–2463, iSSN: 2577-087X.

[36] E. Ambrose, N. Csomay-Shanklin, Y. Or, and A. Ames, “Design and
Comparative Analysis of 1D Hopping Robots,” in 2019 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
Nov. 2019, pp. 5717–5724, iSSN: 2153-0866.

[37] R. Abraham and J. E. Marsden, Foundations of Mechanics. American
Mathematical Soc., 2008, google-Books-ID: YAEKBAAAQBAJ.

[38] U. V. Kalabić, R. Gupta, S. D. Cairano, A. M. Bloch, and I. V.
Kolmanovsky, “MPC on manifolds with an application to the control
of spacecraft attitude on SO(3),” Automatica, pp. 293–300, 2017.

[39] Y. Yang, “Spacecraft attitude determination and control: Quaternion
based method,” Ann. Reviews in Control, vol. 36, pp. 198–219, 2012.

[40] J. Stillwell, “The matrix logarithm,” in Naive Lie Theory, ser.
Undergraduate Texts in Mathematics, J. Stillwell, Ed. New
York, NY: Springer, 2008, pp. 139–159. [Online]. Available:
https://doi.org/10.1007/978-0-387-78214-0 7

[41] “Video,” 2022. [Online]. Available: https://youtu.be/0XMxluC Gs8
[42] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for

model-based control,” in 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems, Oct. 2012, pp. 5026–5033, iSSN:
2153-0866.

[43] “Complete Hopping Robot Code,” 2022. [Online]. Available:
https://github.com/noelc-s/ARCHER hopper

https://doi.org/10.1177/027836498400300207
http://journals.sagepub.com/doi/10.1177/0278364904050917
http://journals.sagepub.com/doi/10.1177/0278364917694244
http://journals.sagepub.com/doi/10.1177/0278364917694244
https://www.cambridge.org/core/product/identifier/S0263574707003487/type/journal_article
https://www.cambridge.org/core/product/identifier/S0263574707003487/type/journal_article
https://doi.org/10.1007/s10514-022-10061-w
https://doi.org/10.1007/s10514-022-10061-w
http://arxiv.org/abs/2209.05375
https://doi.org/10.1007/978-0-387-78214-0_7
https://youtu.be/0XMxluC_Gs8
https://github.com/noelc-s/ARCHER_hopper

	Introduction
	Preliminaries
	Hybrid System Dynamics
	Lie Group Integrators

	Geometric MPC and Multi-Rate Control
	Linearized Dynamics
	Geometric Model Predictive Control
	Quaternionic Feedback

	Implementation and Results
	Hardware
	Simulation
	Implementation Details

	Conclusion and Future Work
	Acknowledgements
	References

