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Abstract— The deployment of robotic systems in real world
environments requires the ability to quickly produce paths
through cluttered, non-convex spaces. These planned trajec-
tories must be both kinematically feasible (i.e., collision free)
and dynamically feasible (i.e., satisfy the underlying system
dynamics), necessitating a consideration of both the free space
and the dynamics of the robot in the path planning phase.
In this work, we explore the application of reachable Bézier
polytopes as an efficient tool for generating trajectories satisfy-
ing both kinematic and dynamic requirements. Furthermore,
we demonstrate that by offloading specific computation tasks
to the GPU, such an algorithm can meet tight real time
requirements. We propose a layered control architecture that
efficiently produces collision free and dynamically feasible paths
for nonlinear control systems, and demonstrate the framework
on the tasks of 3D hopping in a cluttered environment.

I. INTRODUCTION

The development of control strategies which enable robots
to operate in cluttered environments has been a focal chal-
lenge in control, dating back to the early days of mobile
robots [1]. While it is theoretically possible to accomplish
this task in a single shot via policy-design [2]–[5], this
poses significant challenges including reasoning about high
dimensional state and action spaces, nonlinear dynamics,
and having a lack of safety and feasibility guarantees. As a
result, it is often more practical to deploy hierarchical control
architectures, whereby high level path planning algorithms
are paired with low-level tracking controllers. Typically,
kinematically feasible (i.e., collision free) paths are passed
down the control stack, and dynamic feasibility (i.e., sat-
isfaction of the underlying system dynamics) is an assumed
property of the low-level controller. This top-down approach,
however, provides minimal guarantees of state and input
constraint satisfaction, as violations of this assumption at the
low level may cause significant deviations from the planned
high-level trajectory.

Constructing a pipeline which is able to guarantee feasi-
bility necessitates reasoning about both the dynamics and
free space information during the planning phase; algo-
rithms which plan for both kinematic and dynamic feasibility
are termed kinodynamic planners [6]. Kinodynamic plan-
ners can broadly be placed into two categories: sampling-
based and optimization-based methods. In the sampling-
based paradigm, one main way of producing kinodynami-
cally feasible paths is by sampling policies from a discrete
collection of predefined primitives [7], [8]. This method
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Fig. 1: The proposed framework performing path planning around
segmented obstacles. A coarse dynamically feasible path is solved
for on a graph with Bézier polynomial edges, and is further refined
with MPC.

suffers from the fact that the predefined policies induce a
bias and may not make meaningful progress towards the
goal. Another approach is to randomly sample new points
and connect them the nearest node on the graph if a two
point boundary value problem is feasible [9], which can be
viewed as an extension to the classic RRT [10] method of
kinematic path planning. This method requires solving as
many such problems as there are nodes in the graph, which
can be expensive to compute for high dimensional nonlinear
systems.

Sampling-based methods face two major the challenges
– path suboptimality due to the probability of sampling the
true optimal path being zero, and bias, either through the
discretized policy design, or Voronoi bias introduced by
using a Euclidean metric [11]. To address suboptimality,
various methods have proposed refinements to the path
which increase the optimality [9]. To address the notion
of bias, the notion of reachability has been introduced
into sampling-based planners [12]. In particular, authors
have developed reachability-guided RRT variants [13]–[15]
that avoid solving boundary value problems during graph
construction. For nonlinear systems, however, this top-down
approach provides guarantees of feasibility which are often
approximate and rely on using local linearizations of the
nonlinearities; this requires the system to remain sufficiently
close to the nominal trajectory during execution.

In contrast to building a graph of sampled states,
optimization-based approaches instead try to directly gen-
erate optimal paths to the goal state. These methods often

https://www.youtube.com/watch?v=TrScjfhp3G4


require the solution of large mixed integer programs to gener-
ate optimal paths to the goal, either via a keep-out philosophy
[16], or a keep-in philosophy via convex decomposition
[17]–[19]. To address the benefits and drawbacks sampling-
based and optimization techniques, various approaches have
been proposed to combine these methods [20]–[22]. Despite
these advancements, the computational burden associated
with these approaches hinders their deployment in obstacle-
rich environments in real time. As a means to mitigate these
computational limitations, layered approaches to control syn-
thesis have proven effective [23].

In this work, we leverage a layered control architecture for
producing kinodynamically feasible trajectories for nonlinear
systems. Motivated by [24], we employ Bézier basis polyon-
mials for the task of solving paths through nonconvex spaces.
In contrast to this and other works, significant effort is put
towards guaranteeing dynamic feasibility of the generated
paths in order to produce a guaranteed feasible pipeline.
Specifically, we leverage the notion of Bézier reachable
polytopes, i.e., polytopic reachable sets in the space of
polynomial Bézier reference trajectories, as a primitive for
feasible trajectory tracking. Importantly, as the dynamics are
abstracted via the reachable set of the mid level controller,
the planner does not need to include differential constraints.
This work builds on [25] by incorporating a high level path
planner in coordination with a mid and low level controller.
As seen in Figure 1, we demonstrate the effectiveness of this
framework by planning paths in cluttered environments on
the high-dimensional 3D hopping robot, ARCHER [26].

II. BACKGROUND

A. Reduced Order Models and Problem Statement

We begin with the following nonlinear control system:

ẋ = f(x,u), (1)

where x ∈ RN is the state, u ∈ RM is the input, and the
vector f : RN × RM → RN is assumed to be continuously
differentiable in each argument. Directly synthesizing control
actions that achieve complex tasks such as path planning
may be challenging, in part due to the nonlinearities of
the dynamics. To alleviate this complexity, roboticists often
leverage reduced-order models, which serve as template
systems that enable desired behaviors to be constructed in
a computationally tractable way. To this end, consider the
planning dynamics:

ẋd =

[
0 In−m

0 0

]
xd +

[
0
I

]
ud, (2)

where xd ∈ Rn is the reduced-order state and ud ∈ Rm is the
reduced-order input. Note that the the subsequent discussion,
the planning dynamics in 2 can be extended to the case of
full-state feedback linearizeable systems (as in [25]), but for
the sake of simplicity we restrict our attention to integrators.

Let I =
[
0 T

]
⊂ R≥0 be a time interval, ud(·) an input

trajectory defined over I, and xd : I → Rn be an integral
curve of the reduced-order model (2). We can correspond
a reduced order system with a full order system through a

surjective mapping Π : RN → Rn, and feedback controller
k : RN × Rn → RM , which takes in reduced order model
trajectories and produces control actions for the full order
system. A desired property of this controller is its ability to
maintain bounded tracking error:

Definition 1. The set E : I → X is a tracking invariant for
a desired trajectory xd : I → Xd for the system (1) if:

Π(x(t)) ∈ xd(t)⊕ E(t),

where ⊕ denotes the Minkowski sum.

Many existing works discuss ways to produce controllers
with tracking invariant sets E [27], [28]; here, we assume
such a tracking controller is given. For a desired trajectory of
the reduced-order model xd(·), a suitable tracking controller
k, and an initial condition x(0) ∈ RN , we can define the
closed-loop system as:

xcl(t) = x(0) +

∫ t

0

f(x(τ),k(x(τ),xd(τ)))dτ. (3)

We can now introduce the main problem statement:

Problem 1. Given a reduced order model (2), with state
constraint Xd ⊂ Rn, a full order model (1) with input bounds
U ⊂ RM , a worse case tracking error bound Ē ⊃ E(t) ∀t,
and an initial and goal location for the full order model x(0)
and xG, find a trajectory xd(t) such that:

lim
t→∞

Π(xcl(t)) ∈ Π(xG)⊕ Ē , (4a)

Π(xcl(t)) ∈ Xd ∀t, (4b)
k(xcl(t),xd(t)) ∈ U ∀t. (4c)

Simply put, we are searching for a reduced order model
trajectory such that the closed-loop full-order model will
navigate to a goal position while respecting state and input
constraints. To solve this problem, we will use Bézier curves
to parameterize the space of trajectories passed from the
planning level to the feedback level.

B. Bézier Curves and Graphs
A curve b : I → Rm is said to be a Bézier curve [29] of

order p ∈ N if it is of the form:

b(t) = pz(t),

where z : I → Rp+1 is a Bernstein basis polynomial of
degree p and p ∈ Rm×p+1 are a collection of p+ 1 control
points of dimension m. There exists a matrix H ∈ Rp+1×p+1

which defines a linear relationship between control points of
a curve b and its derivative via:

ḃ(t) = pHz(t).

This enables us to define a state space curve B : I → Rn:

xd(t) ≜

 b(t)
...

b(γ−1)(t)

 =

 p
...

pHγ−1


︸ ︷︷ ︸

≜P

z(t), (5)



Fig. 2: The path planning framework presented in Algorithm 1. From left to right: a) A Bézier graph is constructed, b) it is cut based on
the present obstacles, c) a path is solved, and d) the path is refined with MPC.

where γ > 0 is the relative degree of an output b(t) for the
system (2) and is defined such that mγ = n. The columns
of the matrix P ∈ Rn×p+1, denoted as Pj for j = 0, . . . , p,
represent the collection of n dimensional control points of
the Bézier curve B(·) in the state space.

Given a Bézier polynomial control input ud(·), the integral
curve xd(·) can be exactly described by the Bézier polyno-
mial (5) of degree γ larger than that of ud(·). Furthmore,
given two boundary conditions, there exist unique Bézier
curves (of minimal degree p = 2γ − 1) connecting them:

Lemma 1 ( [30]). Given two points x0,xT ∈ Rn, there
exists a unique matrix D such that P = D

[
x0 xT

]
are the

control points of a Bézier curve xd(·) satisfying xd(0) = x0

and xd(T ) = xT .

This statement allows us to plan dynamically feasible
curves simply by reasoning about discrete points in state
space. This concept is paried with a key property of Bézier
curves – namely, the continuous time curve is bounded by
the convex hull of the control points:

Property 1 (Convex Hull [29]). A Bézier curve xd is
contained in the convex hull of its control points:

B(t) ∈ conv({Pj}), j = 0, . . . , p, ∀t ∈ I.

Property 2 (Path Length [24]). The path length of a Bézier
curve xd(·) is upper bounded by the norm distance of its
control points:∫ T

0

∥ẋd(τ)∥2dτ ≤
p−1∑
j=0

∥Pj+1 −Pj∥2

Property 3 (Subdividion [29]). A Bézier curve xd defined
on the time interval I =

[
0 T

]
can be subdivided into

arbitrarily many Bézier curves given a subdivision of I .

Besides the standard aforementioned properties, the reach-
able set of Bézier polynomials which when tracked satisfy
state and input constraints of the tracking system is efficiently
representable:

Theorem 1 ( [30]). Given a convex state constraint set Xd ⊂
Rn, input constraint set U ⊂ RM and error tracking bound
Ē , there exist matrices F and G such that any two points
x1,x2 ∈ Rn satisfying:

F
[
x⊤
1 x⊤

2

]⊤ ≤ G

implies the existence of a Bézier curve xd with xd(0) = x1,
xd(T ) = x2, such that, when tracked, the closed loop system
satisfies Π(xcl(t)) ∈ Xd and k(xcl(t),xd(t)) ∈ U .

The matrices F and G can be thought of as reachable set
oracles, as they determine if there exists dynamically feasible
curves between two points. This notion of Bézier reachable
sets will be used to solve Problem 1 by first efficiently
generating a graph of dynamically feasible Beźier curves.

A graph G is described by a tuple (V,E) with vertices
V connected by edges E. For the purpose of our analysis,
the vertices will represent points in the reduced-order state
space Rn. A directed edge between two vertices e = (v1, v2)
for v1, v2 ∈ V will represent the existence of a dynamically
feasible trajectory connecting v1 to v2.

III. KINODYNAMIC BÉZIER GRAPHS

The goal of this section will be to produce desired
trajectories xd(·) which satisfy Problem 1 when obstacles
are present, i.e. the free space is non-convex. The approach
will be to produce a graph of dynamically feasible Bézier
curves leveraging the Bézier reachable polytopes introduced
in Theorem 1, cut the edges that intersect obstacles, and
perform a graph search that will serve as a feasible warm
start for a trajectory optimization program. The paradigm is
outlined in Algorithm (1) and shown in Figure 2, and starts
with building a graph of Bézier curves.

A. Build Graph
The compact state space of interest Xd represents the free

space of the problem setup, and will serve as a seed which
we can prune in the presence of obstacles. For the sake
of limiting algorithmic complexity, we make the following
assumption about the description of the free space:

Assumption 1. The free space is given by Xd\O ⊂ Rn for
a set of obstacles O = ∪iOi where Oi is convex polytope.

To begin, N points are uniformly sampled vi ∼ U(Xd)
and the matrices F and G from Theorem 1 are generated.

Algorithm 1 Bézier Graphs

1: hyperparameters: (N,T ) ▷ (Node count and time interval)
2: G ← buildGraph(Xd, U)
3: C ← cutGraph(G, O)
4: v∗

k ←findPath(C)
5: xd(·)←refineWithMpc(v∗

k,O)
6: return xd(·)



Algorithm 2 cutHeuristic
1: if any(Avi ≤ b) then ▷ Figure 3a)
2: return 0
3: end if
4: vo ←closestPoint(vi)
5: (h, l)←adjacentHyperplane(vo)
6: if all(hvi ≤ l) then ▷ Figure 3b)
7: return 1
8: end if
9: Solve QP ▷ Figure 3c)

10: return ∥δ∗∥ > 0

Two points vi and vj are connected with an edge ei,j if they
satisfy F

[
v⊤
i v⊤

j

]⊤ ≤ G. As such, every edge in the graph
implies the existence of a dynamically feasible Bézier curve
connecting them. This initial graph will be fixed throughout
the remainder of the Algorithm.

B. Cut Graph
Given a graph of Bézier curves G, we remove the edges

that could result in collisions with any obstacles that are
present. Given a set of obstacles O, Property 1 states that a
Bézier curve is guaranteed to be collision-free if the convex
hull of its control points does not intersect with any obstacles,
i.e. conv{P} ∩ O = ∅. For each edge e with control points
P and convex obstacle Oi characterized by nc hyperplane
constraints AOi ∈ Rn×nc and bOi ∈ Rnc , the problem of
determining if the curve is collision-free can be formulated
as a linear program feasibility check via Property (1), which
we solve using the following quadratic program:

min
λ,δ

δ⊤δ (Cut-QP)

s.t. AOiPλ ≤ bOi + δ

λj ≥ 0,
∑
j

λj = 1

where λ ∈ Rp+1 is the convex interpolation variable and δ ∈
Rnc is a slack variable. Given the solution δ∗, if ∥δ∗∥2 > 0
then the curve is obstacle free. This program can easily be
vectorized to solve all edges simultaneously.

Although this is a quadratic program and therefore can
be solved efficiently, solving it for every edge and obstacle
becomes too computationally expensive for real-time oper-
ation (even when parallelized), especially when the edge
and and number of obstacle count is large. To address this,
we introduce the heuristic outlined in Algorithm 2, which
consists of three checks. First, we determine if any of the
control points of P lie in the obstacle – if so, the curve may
intersect the obstacle. Next, we attempt to find a separating
hyperplane between the obstacle and the control points – if
one exists, then the curve will be collision free. If the points
do not lie on one side of the hyperplane, then the heuristic
is indeterminate, and the original quadratic program must be
solved. In practice, this heuristic typically removes > 99% of
the edges that need to be checked; furthermore, this heuristic
is easily implemented on GPU as it only requires linear
algebra operations, which significantly improves execution
speed (as reported in Section IV).

Fig. 3: The heuristic employed to check if the Bézier curve is
collision free. First, obstacle membership is checked. If not satisfied,
a single proposed separating hyperplane is checked. Finally, the
Quadratic Program (Cut-QP) is solved.

C. Find Path

Due to the random sampling of the points in the graph, the
starting and goal positions are likely not vertices. Therefore,
the start and goal nodes are chosen as the closest normed-
distance points to the desired start and goal positions. The
edge cost is taken to be

∑
i ∥Pi+1 −Pi∥, the upper bound

on the path length of the Bézier curve from Property 2. We
then use Dijkstra‘s algorithm to solve Problem 2:

Problem 2. In the context of Problem 1, consider a collision-
free graph of Bézier curves C = (V,E) produced by
Algorithm 1. Find a path {v∗

k}Kk=0 in the graph connecting
v∗
0 to v∗

K = Π(xG) with v∗
0 satisfying Π(x(0)) ∈ v∗

0 ⊕ Ē .

D. Refine the Path

If the graph solve v∗
k exists, it represents a feasible path

for the system to safely traverse the cluttered environment;
however, it may be significantly suboptimal. To improve
its optimality, we can solve a finite time optimal control
program, which balances tracking the graph solution with
short-horizon optimality. Note that by Lemma 1, a solution
Problem 2 can be converted into a dynamically feasible curve
xd(·) for the reduced order model (2). Then, we sample this
curve at the optimal control time discretization to produce a
sequence of reference points rk, which can be optimized:

min
x,u

N−1∑
k=0

x⊤
k Qxk + Frk + u⊤

k Ruk + x⊤
NVxN (MPC)

s.t. xk+1 = Axk +Buk (7a)
x0 ∈ Π(x(0))⊕ Ē (7b)

D
[
xk xk+1

]
∈ Xd\(O ⊕ E) (7c)

F
[
xk xk+1

]
≤ G (7d)

xN = rN (7e)

where Q,F ∈ Rn×n are symmetric positive definite matrices
weighting distance to reference as well as path length, R ∈
Rm×m is a positive definite input scaling matrix, and V ∈
Rn×n is a terminal cost. The matrices A ∈ Rn×n and B ∈
Rn×m are the exact discretization of the integrator dynamics
in (2). The constraint Xd\(O ⊕ E) is enforced by fining a
separating hyperplane between the node xk and the closest
obstacle (where the same adjacentHyperplane call form the
heuristic can be made). In order to improve the quality of
solutions, (MPC) can be iteratively solved in an SQP fashion.



Fig. 4: 500 randomly generated obstacles with graph replanning at
10 Hz and (MPC) at 200 Hz. Cyan indicates the Bézier graph solve
v∗
k and blue the MPC Bézier solution xd(·).

Importantly, the graph solve represents a feasible warm
start for the MPC program, and can be thought of as
providing a corridor and a dynamically feasible path which
MPC can refine. The main motivation for the structures used
in this paper is the notion of guaranteed feasibility:

Theorem 2. If Problem 2 is feasible, then Problem 1 is
solved by applying (MPC) in closed loop.

Proof. First, we must show that at time t = 0, the solution v∗
k

from Problem 2 provides a feasible solution for (MPC). Let
rk denote the refined sequence of v∗

k, which is constructed to
produce the reference for (MPC) using Property 3. As this is
associated with a Bézier curve for the reduced-order model, it
satisfies the discrete dynamics (7a). Next, by the definition
of Problem 2, we know Π(x0) ∈ v∗

0 ⊕ Ē , which implies
that (7b) is satisfied by Mikoswki addition properties. As
v∗
k is in the collision-free graph C, it satisfies (7d) and (7c).

By construction, (7e) is satisfied. Therefore, r∗k represents a
feasible solution for (MPC).

Next, take x∗
k to denote the MPC solution and consider

the time interval I =
[
0 h

]
for MPC discretization h > 0.

From Lemma (1), we know that there exists a unique curve
xd(·) defined over I connecting x∗

0 to x∗
1. By Theorem 1, the

closed loop system tracking this curve will satisfy (4b) and
(4c) for all t ∈ I . Furthermore, by Definition (1), we have
that Π(x(h)) ∈ x∗

1⊕Ē . Therefore, we can appeal to standard
Robust tube MPC theory [31] to claim recursive feasibility
and robust stability of the closed loop system tracking the
MPC solution, meaning (4a) is achieved and (4b) and (4c)
are satisfied for all time.

We have shown that if there is a solution to the graph
problem in Algorithm 1, then the closed loop system tracking
MPC will satisfy state and input constraints Xd\O and U for
all time, and will approach a neighborhood of the goal xG.

TABLE I: Comparison of functions on CPU, parallelized CPU, and
GPU. Any CPU implementation would violate real time constraints.

cutHeuristic adjacentHyperplane
CPU 5920 ± 36 ms 6.24 ± 0.08 ms
Parallel CPU 3640 ± 31 ms 2.52 ± 0.33 ms
GPU 72.0 ± 1.5 ms 0.61 ± 0.14 ms

Fig. 5: A long-horizon maze with 600 cells, 300 obstacles and
50,000 edges. The graph cut is solved at 10 Hz, and graph solve
and MPC both run at 200 Hz. Blue represents the graph solve, and
red the closed loop system behavior.

IV. RESULTS

We deploy Algorithm 1 on the 3D hopping robot,
ARCHER [26] – a video can be found at [32] and the code
for this project is available at [33]. Let (p, q) ∈ R3 × S3
denote the global position and quaternion of the robot, and
(v,ω) ∈ R3 × s3 the global linear velocity and body frame
angular rates. The full state of the robot x ∈ X ⊂ R20

contains all of the above states, as well as foot and flywheel
positions and velocities. Although planning dynamically fea-
sible paths on the full hybrid system dynamics is possible
[34], the added complexity of planning collision free paths on
the full order state directly quickly becomes intractable. The
most challenging problem preventing the nonconvex problem
from being directly solved in real time is appropriately
choosing a collection of corridors to traverse. By combining
problems at various time scales, the graph solve is able to
provide a coarse estimate of the keep in constraints while
foregoing path optimality, and the short horizon MPC is able
to refine it into a more optimal path. Therefore, we choose
to plan desired center of mass trajectories xd ∈ R4 with
virtual force inputs ud ∈ R2, which are assumed to have
double-integrator dynamics.

The projection map Π : X → R4 is taken to be the
restriction of the full order state to the center of mass x
and y positions and velocities. The tracking controller k is a
Raibert-style controller, which takes in desired center of mass
state and input trajectories and produces desired orientation
quaternions as:

qd(x, t) = Kfb(Π(x)− xd(t)) +Kffud(t)

and desired angular rates ωd ≡ 0. This desired quaternion
is then tracked by a low-level controller:

u(x, t) = −KpIm(qd(t)
−1q)−Kd(ω − ωd(t)),

which runs at 1 kHz. For all experiments, the layered
controller was running on an Ubuntu 20.04 machine with
an AMD Ryzen 5950x @ 3.4 GHz, an NVIDIA GeForce
RTX 4090, and 64 Gb RAM.



Fig. 6: Experiments run on the ARCHER hardware Platform. (Top) 3 snapshots of the graph solve for various obstacle configurations.
(Left) An overhead image of the graph solve and the closed loop system trajectory. In the upper right and bottom left corner, the MPC
refinement around the corner can be seen. (Right) Freeze frames of the graph updating online when the obstacle locations are moved.

In order to solve (Cut-QP) and (MPC), the OSQP library
[35] was used with maximum iterations limited to 50. The
heuristic for cutting the graph and getting the separating
hyperplanes was running on a custom written CUDA kernel.
Using the GPU to perform these operations was critical
to real-time performance – as summarized in Table I, the
CUDA kernel provided a significant speedup as compared to
multithreaded CPU implementation. A nominal graph with
0.5 second Bézier curves and a 50 node MPC horizon with
a timestep of 0.1 s were used. Each iteration of (MPC) was
solved at 100 Hz, and in practice 1 SQP iteration was taken.
Finally, path length cost was scaled significantly higher than
tracking cost in order to incentivize shorter paths than the
graph solve could provide.

A. Simulation and Hardware
As can be seen in Figure 4 and Figure 5, the proposed

framework is able to solve extremely long horizon tasks
with numerous obstacles in real time. Figure 4 shows how
the MPC solution xd(·) can refine the graph solve v∗

k

to improve the optimality of the path while maintaining
collision avoidance. In Figure 5, a grid was used instead of
random sampling due to the structured nature of the problem.
In both of these settings, about 5000 nodes were sampled for
the graph, leading to 50,000 edges to have to be processed
every graph solve time step. In this setup, the (Cut-QP) takes
2.7 seconds to run per obstacle, even when limited to 50
solver iterations. When the heuristic runs, it is able to remove
> 99% of the edges and leads to solve times of 10-20 ms.

For the hardware setup seen in Figure 6, in order to
estimate obstacle locations, we had an overhead ZED 2
camera and used the SAM2 segmenting repository [36]. Once
the experiment started, the segmenter was initialized with
a single click per obstacle, and was able to parse obstacle
locations for the remainder of the experiment, which were
streamed over ROS to the hierarchical controller. SAM2
segmented 20 obstacles at 4 Hz, and the graph cut and
MPC ran at 50 Hz and 200 Hz, respectively. We provided
various cluttered environments to ARCHER, which was able
to solve for feasible paths and traverse them in real time. In
the bottom right of Figure 6, the real-time replanning of the
graph can be seen as the obstacles were kicked around in
the environment.

V. CONCLUSION

We proposed a layered control architecture for performing
path planning through cluttered environments. By leveraging
the properties of Bézier curves, a kinodynamically feasible
graph for a planning model could be efficiently constructed,
and could provide curves that were guaranteed to satisfy state
and input constraints of the full order system when tracked.
By leveraging the CPU and the GPU together, Algorithm (1)
could efficiently be run in real time for extremely long-
horizon tasks such as maze solving both in simulation and
on hardware. Future work includes finding automated ways
of determining the graph size and Beźier horizon length and
using adaptive time scales for combining high performance
and high precision tasks.
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