Noel Csomay-Shanklin

Pasadena, CA | noelcs.com | noelcs@caltech.edu | (619) 768-3627

PhD candidate with 7+ years experience developing control strategies for agile robotic systems. Expertise in applying **optimization** and **machine-learning** to control **legged robots**, with extensive research and industry projects in model predictive control, real-time path planning, and hierarchical control.

EDUCATION

РнD	Control and Dynamical Systems , California Institute of Technology <i>Hierarchical Control: Constructive Theory and Application to Legged Robots</i>	2019 - 2025
BS	Mechanical Engineering , Georgia Institute of Technology GPA: 4.0/4.0, Minors: Computer Science, Robotics	2015 - 2019

Research Spotlight

Optimization-Based Control for Legged Systems

Optimization-based control provides a constructive means of stabilizing hybrid underactuated systems.

- Implemented whole-body MPC to stabilize bipeds $[C_9]$ and hopping robots $[C_{13}]$.
- Combined CPU and GPU compute to enable real-time long horizon path planning [C₁₈].
- Improved the robustness of trajectory optimization solutions via saltation matrices $[C_{12}]$.

Hierarchical Autonomy with Guarantees

Hierarchical controllers enable the feasibility, efficiency, and generalizability of layered control systems.

- Enabled provably robust state and input constrained stabilization with Bézier curves $[C_{11}]$.
- Performed long-horizon path planning efficiently via novel polytopic reachable sets $[C_{19}]$.

Structured Use of Machine Learning in Robotic Systems

Machine learning can improve the stability, adaptability, and robustness of control strategies.

- Improved runtime-speed of optimal control with imitation learning [C₁₆][Video].
- Lowered complexity of learning safety $[C_5]$ and stability $[C_{10}]$ by projecting onto certificates.
- Simplified gait generation $[C_6]$ and gain tuning $[C_8]$ with learned user-preferences.
- Achieved safe path planning by leveraging massively parallel simulation $[C_{17}]$.

INDUSTRY EXPERIENCE

Research Intern 2023
Boston Dynamics AI Institute, Mentor: Farbod Farshidian
Generated a dataset of trajectory optimized behaviors to investigate methods for combining MPC and
RL to produce robust, precise locomotion for quadrupedal robots.
Control Systems Research Intern 2019

Control Systems Research Intern

Disney Research, Mentor: Lanny Smoot Developed control for an in-house omnidirectional treadmill, and demonstrated stabilization of a spherical pendulum and an unactuated "walking" armature $[C_3]$.

Controls and Autonomy Software Engineering Intern

NASA Jet Propulsion Laboratory, Mentors: Alex Brinkman, Paul Backes

Implemented a force controller on a 3-DOF robotic arm in order to test sampling tool geometries for a potential future mission to Enceladus, a moon of Saturn $[C_1]$.

2018

ROBOTS I HAVE WORKED WITH

Left to right by involvement: ARCHER, AMBER, Vision 60, 1D Hopper, Holotile, B-Exo, Cassie, Exo.

TECHNICAL SKILLS

Coding	Modern C++ (proficient), Matlab (proficient), Python (working), CUDA (basic), PyTorch (basic),
	Jax (basic), Labview (basic), Mathematica (basic)
Software	CMake, CppAD, CVX, Eigen, Git, Linux, Mosek, MuJoCo, OSQP, Pinocchio, Solidworks, ROS
HARDWARE	3-axis CNC mill, manual lathe, waterjet, bandsaw, 3D printer, and most basic shop tools

FUNDING AND GRANTS

NSF Graduate Research Fellowship Program 3 years of full tuition and stipend support for PhD	2021 - 2024		
Kortschak Scholars Program 2 years of full tuition and stipend support for PhD	2019 - 2021		
President's Undergraduate Research Award 2 terms of \$1.500 funding for undergraduate research	2017, 2018		
Summer Undergraduate Research Fellowship \$6,000 of funding for summer undergraduate research	2017		
Awards and Recognition			
Outstanding Dynamics and Control Paper Award (ICRA, [C ₁₃])	2023		
Best Oral Paper Award Finalist (Humanoids, $[C_9]$)	2022		
Richard K. Whitehead Jr. Memorial Award In recognition of outstanding scholarship and service	2019		
Goldwater Scholarship Honorable Mention	2019		
Undergraduate Research Symposium College of Engineering Oral Presentation Third Place	2017		
Dean's List (8 terms)	2015 - 2019		
Service and Outreach			
Reviewer	2020 - Present		
Journals: Automatica, RA-L, L-CSS Conferences: ICRA, IROS, Humanoids, CCTA, ACC, CDC			
FIRST Robotics Mentor with Neighbors Empowering Youth Mentoring a community team of middle and high school students design and build a robot to compete in the FRC competition	2021 – Present		
Lab Tours and Outreach Events Over 30 tours given and events attended to students from kindergarten to community college level	2018 – Present		
SURF Mentor	Summer 2022		
Mentored a summer student with communication protocols and the application of MPC to hopping robots			
Rise Tutor	2020 - 2021		
Tutored a high school student with algebra and calculus			
Teaching Experience			
Nonlinear Control Teaching Assistant	2020 - 2023		

Caltech, Professor: Dr. Aaron Ames

Topics: feedback linearization, outputs, underactuation, control Lyapunov functions, Lyapunov backstepping, control barrier functions, robust nonlinear control, adaptive nonlinear control, and hybrid systems. Gave occasional lectures, held weekly recitations, and helped write and grade exams.

Nonlinear Dynamics Teaching Assistant

Caltech, Professor: Dr. Aaron Ames

Topics: existence and uniqueness, comparison principles, linearizations, Lyapunov stability, invariance principles, input-to-state stability, barrier functions, periodic orbits, and Poincaré sections. Gave occasional lectures, held weekly recitations, and helped compose and grade exams.

2020 - 2023

PUBLICATIONS

Journals:

- [J₈] M. Cohen, N. Csomay-Shanklin, W. D. Compton, T. Molnar, A. D. Ames Safety-Critical Controller Synthesis with Reduced-Order Models Submitted to IEEE Control Systems Letters, 2025.
- [J₇] I. Incer, N. Csomay-Shanklin, A. D. Ames, R. M. Murray Layered Control Systems Operating on Multiple Clocks IEEE Control Systems Letters, 2024. [Paper]
- [J₆] Y. Chen, U. Rosolia, W. Ubellacker, N. Csomay-Shanklin, A. D. Ames Interactive Multi-Modal Motion Planning with Branch Model Predictive Control IEEE Robotics and Automation Letters, 2022. [Paper]
- [J₅] Y. Sun, W. Ubellacker, W. Ma, X. Zhang, C. Wang, N. Csomay-Shanklin, M. Tomizuka, K. Sreenath, A. D. Ames
 Online Learning of Unknown Dynamics for Model-Based Controllers in Legged Locomotion
 IEEE Robotics and Automation Letters, 2021. [Paper]
- [J₄] J. Camargo, W. Flanagan, N. Csomay-Shanklin, B. Kanwar, A. Young
 A Machine Learning Strategy for Locomotion Classification and Parameter Estimation using Fusion of Wearable Sensors
 IEEE Transactions on Biomedical Engineering, 2021. [Paper]
- [J₃] W. Ma, N. Csomay-Shanklin, S. Kolathaya, K. A. Hamed, A. D. Ames
 Coupled Control Lyapunov Functions for Interconnected Systems, with Application to Quadrupedal Locomotion
 IEEE Robotics and Automation Letters, 2021. [Paper]
- [J₂] J. Camargo, A. Ramanathan, N. Csomay-Shanklin, A. Young Automated Gap-Filling for Marker-Based Biomechanical Motion Capture Data Computer Methods in Biomechanics and Biomedical Engineering, 2020.
- [J₁] W. Ma, N. Csomay-Shanklin, A. D. Ames Coupled Control Systems: Periodic Orbit Generation with Application to Quadrupedal Locomotion IEEE Control Systems Letters, 2020. [Paper]

Conferences:

- [C₁₉] N. Csomay-Shanklin, A. D. Ames
 Bézier Reachable Polytopes: Efficient Certificates for Robust Motion Planning with Layered Architectures
 Submitted to IEEE American Control Conference (ACC), 2025. [Paper]
- [C₁₈] N. Csomay-Shanklin, W. D. Compton, A. D. Ames
 Dynamically Feasible Path Planning in Cluttered Environments via Reachable Bézier Polytopes
 Submitted to IEEE International Conference on Robotics and Automation (ICRA), 2025.
 [Video]
- [C₁₇] W. D. Compton, N. Csomay-Shanklin, A. D. Ames
 Dynamic Tube MPC: Learning Tube Dynamics with Massively Parallel Simulation for Robust Safety in Practice
 Submitted to IEEE International Conference on Robotics and Automation (ICRA), 2025.
 [Video]
- [C₁₆] N. Csomay-Shanklin^{*}, W. D. Compton^{*}, I. D. J. Rodriguez^{*}, E. Ambrose, Y. Yue, A. D. Ames Robust Agility via Learned Zero Dynamics Policies *IEEE International Conference on Intelligent Robots and Systems (IROS)*, 2024. [Paper][Video][Compilation Video]

- [C₁₅] W. D. Compton*, I. D. J. Rodriguez*, N. Csomay-Shanklin*, Y. Yue, A. D. Ames Constructive Nonlinear Control of Underactuated Systems via Zero Dynamics Policies Conference on Decision and Control (CDC), 2024. [Paper]
- [C₁₄] W. Ubellacker, N. Csomay-Shanklin, A. D. Ames
 Approximating Regions of Attraction via Flow-Control Barrier Functions and Constrained Polytope Expansion
 IEEE Americal Control Conference (ACC), 2024. [Paper]
- [C₁₃] N. Csomay-Shanklin, V. D. Dorobantu, A. D. Ames
 Nonlinear Model Predictive Control of a 3D Hopping Robot: Leveraging Lie
 Group Integrators for Dynamically Stable Behaviors
 IEEE International Conference on Robotics and Automation (ICRA), 2023. Presented with
 the Outstanding Dynamics and Control Paper Award. [Paper][Video]
- [C₁₂] M. Tucker, <u>N. Csomay-Shanklin</u>, A. D. Ames
 Robust Bipedal Locomotion: Leveraging Saltation Matrices for Gait Optimization *IEEE International Conference on Robotics and Automation (ICRA)*, 2023. [Paper][Video]
- [C₁₁] N. Csomay-Shanklin^{*}, A. J. Taylor^{*}, U. Rosolia, A. D. Ames
 Multi-Rate Planning and Control of Uncertain Nonlinear Systems: Model Predictive Control and Control Lyapunov Functions
 IEEE Conference on Decision and Control (CDC), 2022. [Paper][Talk]
- [C₁₀] I. D. R. Jimenez*, N. Csomay-Shanklin*, A. D. Ames
 Neural Gaits: Learning Bipedal Locomotion via Control Barrier Functions and Zero Dynamics Policies
 Learning for Dynamics and Control Conference (L4DC), 2022. [Paper][Video]
- [C9] M. Y. Galliker*, <u>N. Csomay-Shanklin</u>*, R. Grandia, A. Taylor, F. Farshidian, M. Hutter, A. D. Ames
 Planar Bipedal Locomotion with Nonlinear Model Predictive Control: Online Gait Generation using Whole-Body Dynamics
 IEEE-RAS International Conference on Humanoid Robots (Humanoids), 2022.
 [Paper] [Video]
- [C₈] N. Csomay-Shanklin, M. Tucker, M. Dai, J. Reher, A. D. Ames Learning Controller Gains on Bipedal Walking Robots via User Preferences IEEE International Conference on Robotics and Automation (ICRA), 2022. [Paper] [Video]
- [C₇] W. Ubellacker, N. Csomay-Shanklin, T. G. Molnár, A. D. Ames Verifying Safe Transitions Between Dynamic Motion Primitives on Legged Robots IEEE/RSJ International Conference on Intelligent Robots ad Systems (IROS), 2021. [Paper][Video]
- [C₆] M. Tucker, N. Csomay-Shanklin, W. Ma, A. D. Ames
 Preference-Based Learning for User-Guided HZD Gait Generation on Bipedal Walking Robots
 IEEE International Conference on Robotics and Automation (ICRA), 2021. [Paper] [Video]
 [Blog]
- [C₅] N. Csomay-Shanklin^{*}, R. K. Cosner^{*}, M. Dai^{*}, A. J. Taylor, A. D. Ames
 Episodic Learning for Safe Bipedal Locomotion with Control Barrier Functions and Projection-to-State Safety
 Learning for Dynamics and Control Conference (L4DC), 2021. [Paper] [Video] [Blog]
- [C₄] W. Ma, N. Csomay-Shanklin, A. D. Ames
 Quadrupedal Robotic Walking on Sloped Terrains via Exact Decomposition into Coupled Bipedal Robots
 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2020. [Paper]
 [Video]
- [C₃] J. Reher*, N. Csomay-Shanklin*, D. L. Christensen, B. Bristow, A. D. Ames, L. Smoot Passive Dynamic Balancing and Walking in Actuated Environments IEEE International Conference on Robotics and Automation, 2020. [Paper][Video]

- [C₂] E. Ambrose, N. Csomay-Shanklin, Y. Or, A. D. Ames
 Design and Comparative Analysis of 1D Hopping Robots
 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2019. [Paper]
- [C₁] M. Badescu, P. Backes, S. Moreland, A. Brinkman, D. Riccobono, M. Dotson, N. Csomay-Shanklin, S. Ubellacker, J. Molaro, M. Chouroun, G. Genta
 Sampling Tool Concepts for Enceladus Lander In-Situ Analysis
 IEEE Aerospace Conference (AeroConf), 2019. [Paper]

PRESENTATIONS

- [P4] A Hierarchical Perspective on Control SoCal Control Workshop, November 2024. Neuromorphic Cognition Engineering Workshop, June 2023. MILA Robot Learning Seminar, November 2023. SIAM Seminar, November 2023.
- [P₃] Bipedal Locomotion with Nonlinear Model Predictive Control: Online Gait Generation using Whole-Body Dynamics Dynamic Walking, June 2022
- [P₂] Integrated Multi-Rate Control Rigorous Systems Research Group Meeting, July 2021
- [P₁] Fast Trajectory Generation for Quadrupedal Walking on Slopes Dynamic Waking, June 2021

PATENTS

J. Li, B. Kanwar, T. Johnson, J. Meditz, A. Yang, N. Csomay-Shanklin, J. Bishop, D. Molinaro, A. Young **Exosuit Support Systems and Methods** (US 2022/0193887 A1)