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1 Introduction

Throughout this report, we will be investigating the
nonlinear dynamic system that is the n-pendulum –
a depiction of this system can be found in Figure 1.
Seeing as though the pendulum is the canonical non-
linear system, and the double pendulum is a classic
example of chaos theory, the natural extension is to
propagate the system into n-dimensions. Specifically,
it will be interesting the investigate “how nonlinear”
the systems are with respect to the parameter n. For
example, an investigation of the Lipschitz constant
will reveal the the double pendulum is much more
sensitive to initial conditions and parameters than
the single pendulum. In the proposed framework, this
easily can be investigated into as many dimensions is
desired. This system is also personally interesting be-
cause it is loosely related to the research of walking
robots; legged locomoters are simply series pendula.

The equations of motion for the n-pendulum are
derived in the appendix, and are given by (1). This
system is stable about the 0 fixed point and therefore
requires no controller to render stability. In fact, with
nonzero bi terms, it is asymptotically stable about the
origin. This system also sets itself up well for the con-
trols project of the next quarter, with the ability to
investigate how control inputs on various links (fully
and under actuated cases) effect the behavior of the
overall system. The code to perform this derivation
has already been developed, with the time to derive
the equations of motion and simulate a set of initial
conditions for a small time interval given in Table 1.

Table 1: Time taken to derive equations of motion for
various n-pendula and simulate a given trajectory.

n Time (s)
1 0.5
2 1
3 1.5
40 2.2
5 3.1
10 13.5
15 35.3
20 77
30 256

l2i θ̈i

n∑
j=1

mj + li

n∑
j=1

n∑
k=max{i,j}

ljmk(θ̈j cos(θi − θj)− θ̇j(θ̇i − θ̇j) sin(θi − θj))(1− δij)

−gmi

i∑
j=1

lj sin θi + liθ̇i

n∑
j=1

n∑
k=max{i,j}

lj θ̇jmk sin(θj − θi)(1− δij) = bθ̇i

(1)

Figure 1: The n-Pendulum. The ith link has mass mi,
length li, angle off of global vertical θi, and damping
coefficient bi.
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Figure 2: Simulation of the 30-Pendulum from a ran-
dom initial condition.
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2 Setup

Let θ ∈ Q = Sn represent coordinates in the config-
uration space of the system and x = [θ θ̇] ∈ TQ '
Sn × Rn represent the full state of the system. Now
consider the equations of motion of the n−pendulum
as

ẋ = fn(x),

where fn : TQ → Rn. For the sake of simplicity, we
will let g = 9.81, m = 1, l = 1, and b = −0.1 for all
future discussions, unless otherwise stated.

3 Lipschitz Constant

Because fn is continuously differentiable, we can em-
ploy Theorem 2.2 to conclude that our system is Lo-
cally lipschitz continuous for all values of n. In the
case where n = 1, we can perform a calculation of the
Lipschitz constant by hand. Consider f1 as

ẋ = f1(x) =

[
x2

−g sin(x1)− x2

10

]
in the following progression

‖f1(x)− f1(x̃)‖

=

∥∥∥∥[ x2 − x̃2
−g(sin(x1)− sin(x̃1))− 1

10 (x2 − x̃2)

]∥∥∥∥ .
We now employ the following theorem without proof.

Theorem 3.1. A function f : Rn → Rn is locally
(globally) Lipschitz iff each fi : Rn → R is locally
(globally) Lipschitz.

With this, consider f11 as

‖f11 (x)− f11 (x̃)‖ = ‖x2 − x̃2‖
= ‖

[
0 1

]
(x− x̃)‖

= 1︸︷︷︸
L

‖x− x̃‖.

In addition, we have

‖f12 (x)−f12 (x̃)‖

= ‖ − g(sin(x1)− sin(x̃1))− 1

10
(x2 − x̃2)‖

≤ ‖ − g(x1 − x̃1)− 1

10
(x2 − x̃2)‖

≤ g︸︷︷︸
L

‖x− x̃‖.

Therefore, with L = max{1, g}, we have that our
system is globally Lipschitz.

As a precursor to higher dimensional cases, we can
set up the problem of finding the Lipschitz constant
as a maximization problem, and compute the answer
numerically via the following program

Ln0 = max
x∈Bε(x0)

‖Dfn(x)‖,

where ‖ · ‖ is selected to be the 2-norm. This can
be run with lower and upper bounds imposed on the
fmincon function in Matlab in order to restrict the
domain to Bε. When run in the n = 1 case, we re-
turn 9.81, as expected. Additionally, this bound is
found even when ε → ∞, leading us to believe that
this bound is really a global Lipschitz constant rather
than a local one, as was previously proven. In the
case when n = 2, this evaluation becomes unbounded;
therefore, we can reasonable conclude that for n > 1,
only local Lipschitz continuity holds. This matches
intuition, because in higher dimensional cases, cou-
pling between links leads to θ̇2 terms, which are not
globally Lipschitz functions. The Lipschitz constants
of various n-pendula when ε = 1 are summarized in
Table 2. The trend of higher n causing higher L0

Table 2: Local Lipschitz constants for various n val-
ues

n L0

2 40.0
3 76.8
4 119.8

is expected; as n increases, the chaos and ”speed” of
the system also increases, meaning that the states are
more likely to change rapidly.

4 Picard Iteration

A numerical instantiation of the Picard integral was
implemented in Matlab and is used to solve the so-
lutions of various n cases with the initial condition
θi = 2, θ̇i = 0. The Picard integral was left to iterate
until subsequent z values were within 0.001 of each
other, i.e. the algorithm converged.

As can be seen in Figure 3, for the n = 1 case, the
discrete dynamics system as described by the Picard
operator converge to a solution that matched ODE45
within discernable error. The iterations of the algo-
rithm can be seen in Figure 3a where lines that are
more red correspond to earlier fits (of lower polyno-
mial order) and lines that are more green correspond
to later fits. In fact, T could be extended arbitrarily
far and the solution would match ODE45 exactly if
the algorithm were left to converge.
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This was not the case for higher values of n, as
seen in Figure 4 when n = 2. Even though the al-
gorithm converges, the solution diverges from ODE45
over time. The explanation for this is from the chaotic
nature of the system. Any numerical difference that
develops over time will be compounded buy the chaotic
nature of the double pendulum and will lead to diver-
gent solutions. We can also look at Figure 4a to see
that although the algorithm converges, its intermedi-
ate states oscillated wildly at the end point. In fact,
if we extended the time interval further, the algo-
rithm would diverge and no solution could be found.
To ameliorate this, we implemented an iterative Pi-
card method that would only solve the system for
0.1 seconds and would then pass that final condition
to be the initial condition of the next iteration. This
allowed for great computational speedup, and reason-
able solutions could be found (over small time inter-
vals) in the case where n = 2. In fact, this method
allowed for solutions to be found in the n = 4 case, as
seen in Figure 5, which would otherwise have been in-
tractable to compute in a reasonable amount of time
with the base Picard Iteration method. As can be
seen in Figure 5b though, this method is still not rig-
orous to increased time intervals. If this method were
used moving forward, smaller time intervals or adap-
tive time intervals could have been used to acheive
more accurate results.

(a) Iterations of Picard (b) ODE45 vs Picard

Figure 3: Picard Integral for n = 1, T = 4.

(a) Iterations of Picard (b) ODE45 vs Picard

Figure 4: Picard Integral for n = 2, T = 0.8.

(a) ODE45 vs Picard, T=0.6 (b) ODE45 vs Picard, T=10

Figure 5: Picard Integral for n = 4, varying time
scales.

5 Perturbation

5.1 Initial Condition

In order to gain an intuition of the dynamics, we will
start with the n = 1 case. We assume q(t0) = [2 0]>

for the nominal system, and q̃(t0) = [4 0]> for the per-
turbed system. As can be seen in 6, even with a large

Figure 6: Sensitivity to Initial Conditions for n = 1. q
is the nominal system and q̃ is the perturbed system.

perturbation in the initial condition, the norm of the
error is bounded by ‖x(0)− z(0)‖eLt, as is predicted
by the theory. Because the Lipschitz constant is so
large even for this simple system, the dynamics were
only simulated over a small time interval. Moving
onto the triple pendulum with the same perturbation
in initial condition, we get similar behavior, as seen in
Figure 7. This plot is perhaps less interesting because
the Lipschitz constant is so massive that it creates
an insurmountable bound. Because we are discussing
sensitivity to initial conditions, we will take a slight
excursion into chaos theory just for fun. We simulate
120 triple pendula for 5 seconds with initial condi-
tions within some ε = 0.01rad ball, and plot the con-
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Figure 7: Sensitivity to Initial Conditions for n = 3. q
is the nominal system and q̃ is the perturbed system.

figuration space of the resulting dynamics, as seen in
Figure 8. It is color coded based on time; more blue
means t is closer to 0, and more red means t is closer
to 5. Each blue point at the head of the line repre-
sents a different initial condition. It is interesting to
watch this plot evolve over time, which can be found
here. The time evolution of two instances of the phys-
ical system can be found here. Figure 8 reveals two

Figure 8: Flow of the system in configuration space
depicting sensitivity to initial conditions.

things. First, the system is highly chaotic, because
even after just 5 seconds the various pendula have
wildly diverged. Second, the Lipschitz constant is a
rediculously conservative bound on the error. Even
though the system is chaotic, for the first few seconds
the dynamics are closely related, a fact which is not
at all captured by the bound.

5.2 System Parameters

Again, we will start by considering the single pendu-
lum, as shown in Figure 9. In the following discus-
sion, q̃ will be the solution of the system with per-
turbed parameters. Our initial system has the same
parameters as were described in Section 2, and the
perturbed system has the following parameters: g =
19.81 m/s, m = .1, b = 0, l = 0.1 (over 100% dif-
ferent). Similar to before, in the n = 3 case not

Figure 9: Sensitivity to Parameters for n = 1. q is
the nominal system and q̃ is the perturbed system.

much useful is gained from the Lipschitz constant, as
is seen in Figure 10. In order to derive the constant
µ such that the norm of the perturbation dynamics
satisfies the bound ‖g(z)‖ ≤ µ for all z ∈ E, the same
strategy is used as with calculating the Lipschitz con-
stant. Dynamics for g are generated by subtracting
the nominal dynamics from the perturbed dynamics,
and fmincon is used to find the maximum norm of
g in the domain. A table showing the values of µ is
summarized below, where similar to L0, the trend is
linear with respect to n.

Table 3: Local Lipschitz constants for various n val-
ues

n µ
1 158.5
2 231.6
3 286.7
4 338.3
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Figure 10: Sensitivity to Parameters for n = 3. q is
the nominal system and q̃ is the perturbed system.

6 Equilibrium Points

We propose the family of points x = [nπ, 0] ∈ R2n, n ∈
Zn as equilibrium point candidates for the n-pendulum.
Plugging this into 1 results in the following equation

l2i θ̈i

n∑
j=1

mj ± li
n∑
j=1

n∑
k=max{i,j}

ljmkθ̈j(1− δij) = 0

where the sign of the second term is dependent on
the inputs. It is easy to see this can only be true for
every i ∈ [1, .., n] if θ̈i ≡ 0. Therefore, we have that
ẋ = f(x) = 0, implying that x = [nπ, 0] ∈ R2n, n ∈
Zn are equilibrium points of the n-pendulum for all
n, of which intuition tells us only 0 ∈ R2n is stable.

7 Lyapunov

For the following analysis, we will restrict ourselves to
the point 0 ∈ R2n. We propose the total relative en-
ergy of our system as a Lyapunov function candidate
for the point 0 ∈ R2n, i.e.

V (x) = E(x)− E(0) = T (x) + V (x)− V (0).

This choice of Lyapunov function is obviously locally
positive definite by noting that T contains a quadratic
term in θ̇ and the first order Taylor approximation
of cos(θ) is on the order of −θ2, whereby −V (x) is
positive definite. Due to the complexity of solving
the V̇ , a symbolic approach was taken in MATLAB,
i.e. V was constructed along with the equations of
motion and V̇ = ∂V

∂x f(x) was calculated. The results
are summarized in Table 4. More values were not
calculated because of the computational complexity

Table 4: V̇ for various n values

n V̇ (x)

1 b1θ̇
2
1

2 b1θ̇
2
1 + b2θ̇

2
2

3 b1θ̇
2
1 + b2θ̇

2
2 + b3θ̇3

4 b1θ̇
2
1 + b2θ̇

2
2 + b3θ̇

2
3 + b4θ̇

2
4

of solving the equations of motion in explicit form,
but the trend is clear. We can make the following
conjecture

V̇n =

n∑
i=1

biθ̇
2
i ,

which the numeral results allude to the validity of.
This conclusion is corroborated by the development
in class, where the above form was shown the be valid
for mechanical systems. Therefore, because V̇ is neg-
ative definite for any negative choice of bi, we can
conclude that the origin is stable. We now employ
La Salle’s invariance principle to show that the ori-
gin is in fact asymptotically stable. Fix any n, and
assume V̇n =

∑n
i=1 biθ̇

2
i . If V̇n = 0, it must be true

that θ̇i ≡ 0. This implies from our dynamics that

−gmi

i∑
j=1

lj sin θi

must be zero, which is only true for all i if each θi
is some multiple of π. From the locality of our Lya-
punov function, we can restrict this to requiring θi to
be zero, i.e. x = 0. Thus, from La Salle’s invariance
principle, we have the the origin is asymptotically
stable. Visualizations of the flows along Lyapunov
surfaces for the 1, 2, and 3 dimensional cases can be
found here, here, and here, respectively.

8 Region of Attraction

In order to estimate the region of attraction, the lin-
earization method described in chapter 8 is employed.
This is done numerically as to allow for scaling up in
dimensionality. After the linearization of the system

Df(x) is constructed, G(x) =
∫ 1

0
Df(τx)dτ −Df(0)

can easily be calculated. Additionally, using the lyap
function in Matlab, the continuous time Lyapunov
equation can be used to solve for the P correspond-
ing to Q = I, resulting in an upper bound for N ,
i.e.

Nmax =
1

2λmax(P )
.
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Then, fmincon is used to solve the following opti-
mization problem

max
x∈TQ

‖G(x)‖2

s.t. ‖G(x)‖2 < Nmax.

We can use r = ‖x∗‖2 where x∗ is the argmax of
the above optimization problem to construct a ball
around the origin Br(0) to estimate our region of at-
traction. As a sanity check, for the n = 1 case with
g = l = b = 1, the value r = 1.35 was found, which
matches very closely to what was given in the book.
Using our normal paraemeters as described in Sec-
tion 2, the following table summarizes our region of
attraction for various n values.

Table 5: Domain of attraction for various n values

n r
1 0.0752
2 0.0115
3 0.0057

These results are, however, quite dissatisfying. Turn-
ing to the literature to investigate other ways to es-
timate domains of attraction reveals that we can use
the method of reverse integration of our solutions to
expand an opproximation of our domains of attrac-
tion. We start by constructing a level set of our Ly-
papunov function

Ωε = {x : V (x) ≤ ε}.

Because of the asymptotic stability of the origin, we
know that this set will be forward invariant, and that
the ω-limit set is the origin. This implies that in re-
verse time, this set is backwards invariant. Therefore,
in order to expand this set, we sample points along
it’s boundary and integrate in reverse time. We need
not select points in the interior, because the interior
points must necessarily cross the boundary first in re-
verse time. For the n = 1 case, choosing ε = 0.0752,
our previous estimate of the domain of attraction,
we have the image seen in 11 where each colored
line represents the “reverse” flow of a different ini-
tial condition. Although this is not a valid proof of
a larger domain of attraction, it seems as though we
are sweeping out a new, larger area, namely that Ω0.2

could serve as a domain of attraction. If we now take
points at the maximal radius, Ω0.2, and repeat the
process iteratively, we get something more interest-
ing, as seen in Figure 12. This image is a bit mis-
leading, however. Here, one would assume that once
past a certain radius, only a small subset of points
converge to the origin. This is simply due to the

Figure 11: Ω0.1

Figure 12: Ω1

fact that we are representing the phase space in the
wrong geometry. Specifically, we are attempting to
map S×R to R2, which are most certainly not home-
omorphic. In order to better understand our set, we
therefore use the mod function to map all points to
the interval [0, 2π). This results in the following more
illustrative image, as shown in Figure 13.

We can start to see that most points in the plane
are in the domain of attraction, except for the im-
portant point (π, 0). As alluded to before, this is an
unstable equilibrium point of the system, and there-
fore will not converge to the origin. Because this is
a point and therefore has measure zero, as we con-
tinue to perform this integration the set will become
more dense around this point, but no flows will in-
tersect this specific point, as seen in Figure 14. In
an attempt to due the geometry of the system jus-
tice, in Figure 15 we have this final plot showing the
solutions in the true phase space, S× R.
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Figure 13: Ω1 under modified geometry.

Figure 14: Ω2

Figure 15: Ω1 under the correct geometry.

9 Underactuated Periodic Orbits

For the final piece of this project, periodic orbit gen-
eration for the triple pendulum is investigated. In
order to sneak some controls into this project, and
to combat the nonconservative damping, the system
is such that the first link of the triple pendulum is
actuated. The initial condition

x0 =
[
π
4

π
4 0 0 0 0

]
is chosen arbitrarily, and an optimization problem is
run in order to find the control input required to gen-
erate a periodic orbit, as given by

min
u∈B, T∈R>0

‖u‖2

s.t. ẋ = f(x) + g(x)u

ϕt+T (x0) = ϕt(x0)

(2)

where B is the set of 10th order Bézier polynomi-
als. The optimization problem in 2 converged in 43
iterations after 40.8 seconds and terminated with a
feasibility of 7.039e-11. In order to investigate the
stability of the orbit, the method of Poincaré sections
is used, with a Poincarè section given by

Σ = {x ∈ R2n : (x0 − x)>f(x0) = 0}.

The above form was constructed numerically, and set
as an ODE event function to stop integration upon
satisfaction. Because a hyperplane was used instead
of a more intelligently designed hypersurface, the sys-
tem intersected the plane with the valid velocity con-
dition twice per period, so extra care was taken to
ensure that the condition only stopped integration
when desired.

Perturbing the system and constructing a lineariza-
tion of the Poincarè return map results in a range of
eigenvalues above and below 1. The validity of the
linearization method is verified by noting that none
of the eigenvalues are exactly 1. The absolute value
of the largest eigenvalue of the discretized Poincarè
section is 1.023, meaning nothing can be concluded
about the stability of the system. It was clear to
see through simulation though that the system was
unstable. In fact, even without perturbations the op-
timized orbit was found to diverge, as seen here.

What is perhaps more interesting, is that by leav-
ing the system to evolve further, the forced triple
pendulum converges to a period-2 orbit. The sta-
bility of this new orbit is then investigated using the
same method of Poincarè sections, and similar to be-
fore, a range of eigenvalues above and below 1 are
found, with the maximum eigenvalue being given by
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Figure 16: Physical evolution of the system with path
shown in orange. (a) depicts the nominal periodic
orbit that was optimized for and (b) depicts the orbit
that the system converged to after 200 seconds.

Figure 17: Evolution of the system in velocity space.
(a) depicts the nominal periodic orbit that was opti-
mized for and (b) depicts the orbit that the system
converged to after 200 seconds.

4.76. Although again nothing can be definitively con-
cluded, using similar logic as before could lead us to
(erroneously) believe that this orbit is highly unsta-
ble. However, the only thing we can conclude with
the linearized Poincarè section is that the system is
not exponentially stable. If we again leave the sys-
tem to run, we notice that the trajectory eventually
converges back to the desired orbit. This would nat-
urally lead to the conjecture that the new orbit is
asymptotically stable, but we unfortunately do not
posses the numerical tools to prove such a statement.
The evolution of the system as a physical system and
in velocity space can be seen in Figures 16 and 17,
respectively. One explanation for the stability of the
new orbit comes from looking at the energy of the
system over time, as seen in Figure 18, where the
system naturally flows to a minimal energy state of
period-2 nature.

Figure 18: Flow of system to minimal energy state of
period-2 nature.

This phenomena raises a number of questions,
each of which would be interesting to investigate fur-
ther. First, why does the system “prefer” the orbit
that it converged to? Is the energy a complete ex-
planation, and is the fact that the stable orbit has
greater symmetry a coincidence? Next, how can we
exploit the stability property of the second orbit into
our original trajectory generation program? Finally,
how can we incorporate feedback to render our orig-
inal optimized orbit attractive?

As a further research goal, I would like to more
rigorously investigate switching between periodic or-
bits. A preliminary theory for this exists in dynamics
literature, namely in the field of homo/heteroclinic
connections between periodic orbits, but I have not
seen this properly formulated in the control theory
literature. What we have just created, in fact, is con-
troller which creates a homoclinic connection between
two orbits, as depicted in Figure 19. A potential re-
search question could go as follows: Can we create a
switching controller with stability guarantees to cre-
ate homo/heteroclinic connections between periodic
orbits? Essentially, how can we predict and control
the behaviour we have just discovered?

Figure 19: Heteroclinic connection between two peri-
odic orbits.
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10 Appendix: Derivation of EoM

Let si be the spatial reference frame of the ith body, with s0 representing the global origin (located at the
center of the fixed base) by convention. Additionally, let mi, bi, and li represent the mass, damping, and
length of the ith link, respectively. If ri,j ∈ Rn represents the location of the jth body in the ith reference
frame, we have

ri−1,i =
[
li sin θi li cos θi

]
and

r0,i =

i∑
j=1

rj−1,j .

With vi ∈ R2 representing the velocity of the ith body in the global frame, we can calculate

〈vi,vi〉 = r0,i · r0,i

=

 i∑
j=1

rj−1,j

 ·
 i∑
j=1

rj−1,j


=

i∑
j=1

i∑
k=1

lj lkθ̇j θ̇k cos(θj − θk).

With this we can construct the kinetic energy of the system, T , as

T =
1

2

n∑
i=1

mi〈vi,vi〉.

We can also describe the vertical height of the ith link is the world frame as

hi = 〈r0,i, ̂〉

=

i∑
j=1

〈rj−1,j , ̂〉

=

i∑
j=1

lj cos θj

leading to the potential energy of the system, V , as

V = g

n∑
i=1

mihi.

Our Lagrangian, of course, is simply L = T − V . We can now use the Lagrange-d’Alembert principle to get
the equations of motion as

d

dt

(
∂L

∂θ̇i

)
− ∂L

∂θi
= bθ̇i

l2i θ̈i

n∑
j=1

mj + li

n∑
j=1

n∑
k=max{i,j}

ljmk(θ̈j cos(θi − θj)− θ̇j(θ̇i − θ̇j) sin(θi − θj))(1− δij)

−gmi

i∑
j=1

lj sin θi + liθ̇i

n∑
j=1

n∑
k=max{i,j}

lj θ̇jmk sin(θj − θi)(1− δij) = bθ̇i

Page 10
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