
Bézier Reachable Polytopes: Efficient Certificates for
Robust Motion Planning with Layered Architectures

Noel Csomay-Shanklin, and Aaron D. Ames

Abstract— Control architectures are often implemented in
a layered fashion, combining independently designed blocks
to achieve complex tasks. Providing guarantees for such
hierarchical frameworks requires considering the capabilities
and limitations of each layer and their interconnections at
design time. To address this holistic design challenge, we
introduce the notion of Bézier Reachable Polytopes – certificates
of reachable points in the space of Bézier polynomial reference
trajectories. This approach captures the set of trajectories that
can be tracked by a low-level controller while satisfying state
and input constraints, and leverages the geometric properties
of Bézier polynomials to maintain an efficient polytopic repre-
sentation. As a result, these certificates serve as a constructive
tool for layered architectures, enabling long-horizon tasks to
be reasoned about in a computationally tractable manner.

I. INTRODUCTION

Modern control systems overwhelmingly employ layered
architectures, wherein independent blocks are combined to
achieve complex behaviors [1]. Typically, each block is de-
signed in isolation and their interconnections are established
in an ad-hoc manner. While this separation enables tractable
controller design, achieving joint feasibility between lay-
ers is non-trivial. To create safe and reliable autonomous
systems, we need a cohesive theory that considers not
only the individual behavior of each block, but also how
their interaction effects overall performance and constraint
satisfaction. In this work, we focus on advancing such a
theory for layered architectures that include a trajectory
generator (planner) and a feedback controller (tracker).
Specifically, we leverage the geometric properties of Bézier
polynomials to construct a certificate which enables the
connection of such a planner-tracker setup with a high-
level decision making layer while maintaining feasibility
guarantees, as seen in Figure 1.

The planner-tracker paradigm is is extremely common
in robotic systems [2], [3], and has theoretical roots in
hierarchically consistent control [4], approximate simulation
relations [5], and bisimulation [6]. In such a framework,
the planner ensures feasibility by adjusting the trajectories
it generates based on a tracking certificate, i.e. a repre-
sentation of what the tracking controller can reasonably
accomplish. This concept of layers communicating through
achievable performance metrics serves as the foundation
for robust motion planning [7]. For linear systems, such

Authors are with the Department of Computing and Mathematical
Sciences, California Institute of Technology, Pasadena, CA 91125, USA,
Corresponding author: noelcs@caltech.edu.

This research is supported by Technology Innovation Institute (TII).

Fig. 1. A depiction of the layered architectures investigated in this work,
where the reachable set of the combined planning and tracking layers can
be represented via a linear inequality in the space of Bézier polynomials.

tracking certificates can be synthesized directly [8]. For
nonlinear systems, generating tracking certificates is a more
challenging task, and remains an active area of research.
One option leverages Hamilton Jacobi reachability analysis
to produce tracking upper bounds [9]. Alternatively, the
linearization of the nonlinear system can be used to get
approximate polytopic reachable sets [10]. Depending on
the existing system structure, notions of Input to State
Stability [11] can also be used to constructively produce
tracking certificates for nonlinear control systems [12].

To extend the notion of guaranteed feasibility to a
decision making layer, we require a certificate for the
combined planner-tracker model, i.e. a representation of
which states can be reached while satisfying state and
input constraints. For discrete systems, this is often done
by planning sequences of discrete actions based on motion
primitives [13], [14]. Extending this to arbitrary continuous
behaviors often requires solving two point boundary value
problems [15], which can be computationally expensive.
Importantly, however, the structure of the planning system
can generally be imposed as a part of the design process.
We leverage this design degree of freedom by enforcing
the planner to generate Bézier polynomials; in doing so, we
are able to ensure a computationally efficient reachable set
representation.

This paper presents a theory for layered architectures that
rely on Bézier curves, which have become increasingly pop-
ular for motion planning [12], [16], [17]. We take these ideas

further by proving that if the planning layer is parameterized
via Bézier polynomials, then the space of points which
can be reached within a time interval is parameterizeable
via a polytope—the Bézier Reachable Polytopes. We show
that these polytopes serve as performance certificates which
enable holistic constraint satisfaction guarantees for layered
architectures which utilize planning and tracking layers. We
demonstrate the use of Bézier reachable polytopes in the
context of completing long-horizon tasks on a simulated
pendulum and experimentally on a physical 3D hopping
robot with tight state and input constraints.

II. BACKGROUND

Consider the following nonlinear control system:

ẋ = f(x,u), (1)

with state x ∈ X ⊆ RN , input u ∈ U ⊆ RM , and whose
dynamics f : X ×U → RN are assumed to be continuously
differentiable in their arguments. The system (1) will be
represented as the tuple Σ = {X ,U , f}. Due to the potential
complexity of the dynamics f , directly synthesizing control
actions for challenging tasks may be intractable. To address
this, control engineers often rely on planning models, which
serve as template systems that enable desired behaviors to
be constructed in a computationally tractable way. These
models are defined as:

Definition 1. A system Σd = {Xd,Ud, fd} is said to be a
planning model for a system Σ if there exists a surjective
mapping Π : X → Xd and a right inverse Ψ : Xd ↪→ X
such that Π ◦Ψ = idXd

.

As the dimensionality of Xd is typically much smaller
than X , there are many possible inverse mappings Ψ, each
of which induce an embedding of the reduced state space
Xd into the full state space X . To link a full-order system
with a planning model, we must define a feedback controller
k : X × Xd × Ud → U which aims to track the states of
the planning model. This controller results in the following
closed-loop system:

ẋ = f(x,k(x,xd,ud)) ≜ fcl(x,xd,ud), (2)

which, given any initial condition x0 ∈ X , has continuously
differentiable solution xcl : I → X over some interval I ⊂
R≥0 defined as:

xcl(t) ≜ x0 +

∫ t

0

fcl(xcl(τ),xd(τ),ud(τ))dτ.

A key desired property of this controller is its ability to
maintain bounded tracking error:

Definition 2. Let Σd be a planning model for system Σ.
Given a desired trajectory xd(·), a set-valued function E :
Ud → P(X) is a tracking certificate for the system Σ if:

xcl(t) ∈ Ψ(xd(t))⊕ E(ud(t)),

where ⊕ denotes the Minkowski sum.

Example 1. Let Σ represent the closed-loop system of
a 3D hopping robot tracking a center of mass velocity
command with whole-body model predictive control (MPC).
In this scenario, the planning system Σd is that of a single
integrator and the mapping Π projects the full state space
of the hopper into the center of mass planar positions. The
function k and mapping Ψ define the process of MPC,
which takes in desired velocity trajectories and produces
joint-space trajectories which can be tracked with bounded
error via PD control as a function of how much input the
planning system applies.

Given a planning model Σd, we will be interested in
characterizing the space of all desired trajectories for the
system Σ which satisfy the following problem:

Problem 1. Consider a compact state constraint set CX ⊂
Xd and compact input constraint set CU ⊂ U . Produce
trajectories xd(·) which when tracked achieve the following:

• Π(xcl(t)) ∈ CX for all t ∈ I ,
• k(xcl(t),xd(t),ud(t)) ∈ CU for all t ∈ I .

We will go about solving this problem by appropriately
constraining the space of trajectories xd(·), wherein xd(·)
will be a design parameter. Although planning models can
have any system structure (and are useful as long as there
exist an appropriate mapping Ψ and controller k), in order
to make constructive guarantees we make further assump-
tions about the planning dynamics. Specifically, consider
a nonlinear planning model system with coordinates qd ∈
Rm, state xd = [q⊤

d , q̇
⊤
d , . . . ,q

(γ−1)
d

⊤]⊤ ∈ Rn for some
γ ∈ N, and control-affine dynamics of the form:

ẋd =

[
0 In−m

0 0

]
xd +

[
0

fd(xd)

]
+

[
0

gd(xd)

]
ud, (3)

where In−m is an identity matrix of size n − m, the 0
matrices are appropriately sized, ud ∈ Rm is the input,
and the drift vector fd : Rn → Rm and actuation matrix
gd : Rn → Rm×m are assumed to be locally Lipschitz con-
tinuous on Rn. We define a dynamically feasible trajectory
for such a system as:

Definition 3 (Dynamically Feasible Trajectory). Given a
time interval I ≜ [0, T] for T ∈ R≥0, a piecewise
continuously differentiable function xd : I → Rn is a
dynamically feasible trajectory for Σd if there is a piecewise
continuous function ud : I → Rm such that:

ẋd(t) = fd(xd(t)) + gd(xd(t))ud(t), (4)

for almost all t ∈ I .

In order to design dynamically feasible trajectories xd(·)
for Σd, we must reason about integral curves of the plan-
ning model dynamics. To parameterize dynamically feasible
trajectories of (3) via Bézier curves, we assume that the
planning system Σd is fully actuated:

Assumption 1. We have that fd(0) = 0 and the matrix
gd(xd) is invertible for all xd ∈ Xd.

III. BÉZIER CURVES

A curve b : I ≜ [0, T] → Rm for T > 0 is said to be a
Bézier curve [18] of order p ∈ N if it is of the form:

b(t) = pz(t),

where z : I → Rp+1 is a Bernstein basis polynomial
of degree p and p ∈ Rm×p+1 are a collection of p + 1
control points of dimension m. There exists a matrix H ∈
Rp+1×p+1 (as in [12]) which defines a linear relationship
between control points of a curve b and its derivative via:

ḃ(t) = pHz(t).

This enables us to define a state space curve B : I → Rn:

B(t) ≜

 b(t)
...

b(γ−1)(t)

 =

 p
...

pHγ−1

︸ ︷︷ ︸

≜P

z(t). (5)

The columns of the matrix P ∈ Rn×p+1, denoted as Pj

for j = 0, . . . , p, represent the collection of n dimensional
control points of the Bézier curve B in the state space.
Furthermore, if we take xd(·) ≡ B(·) to represent a desired
trajectory of Bézier curves, we observe that:

ẋd =

[
0 In−m

0 0

]
xd +

[
0

fd(xd)

]
+

[
0

gd(xd)

]
ud,

for the continuous input signal:

ud = gd(xd)
−1

(
q
(γ)
d − fd(xd)

)
. (6)

Therefore, any Bézier curve B(·) constructed via (5) is a
dynamically feasible trajectory for our planning model. As
such, we can leverage Bézier curves towards the design of
trajectories xd(·) satisfying Problem 1. Bézier curves enjoy
a number of desirable properties:

Property 1 (Convex Hull [18]).

B(t) ∈ conv({Pj}), j = 0, . . . , p, ∀t ∈ I.

Property 2 (Linear Bounding). For a vector d ∈ Rk and a
matrix C ∈ Rk×n, we have:

CPj ≤ d, j = 0, . . . , p =⇒ CB(t) ≤ d, ∀t ∈ I.

Proof. The convex hull property of Bézier curves implies
that for any t ∈ I and any row c ∈ Rn of C with
corresponding value d ∈ R of d, we may write:

cB(t) =

p∑
j=0

λj(t)cPj

for some λj(t) ≥ 0 and
∑p

j=0 λj(t) = 1. Therefore,

cB(t) ≤
p∑

j=0

λj(t)max
j

cPj = max
j

cPj ≤ d,

as each Pj term satisfies cPj ≤ d by assumption.

Fig. 2. A visual guide to the properties of Bézier curves.

We will specifically be interested in producing Bézier
curves that connect initial conditions xd(0) ∈ Xd and ter-
minal conditions xd(T) ∈ Xd in a fixed time T . Given such
boundary conditions, a Bézier curve B(·) which connects
them must satisfy the following set of equality constraints:

b(k)(0) = pHkz(0) = q
(k)
d (0), k = 0, . . . , γ − 1, (7)

b(k)(T) = pHkz(T) = q
(k)
d (T), k = 0, . . . , γ − 1. (8)

These constraints lead to the following Property:

Property 3 (Boundary Values). Given a time T > 0, two
points x0,xT ∈ Rn, and order p ≥ 2γ − 1, there exists a
matrix D ∈ Rp+1×2n such that any curve xd(·) with control
points satisfying:

pD =
[
x⊤
0 x⊤

T

]
(9)

also satisfies xd(0) = x0 and xd(T) = xT .

Proof. We begin by noting that z(0) = [1 01×p]
⊤ and

z(T) = [01×p 1]⊤. Then, collecting the constraints in (7)
and (8) yields:

p
[
H0

0 H1
0 . . . Hγ−1

0

]
= x0.

p
[
H0

p H1
p . . . Hγ−1

p

]
= xT .

where Hi
j denotes the jth column of the matrix H raised

to the ith power. It can be algebraically verified that H has
the form:

Hi
0 =

[︸ ︷︷ ︸
i + 1

⋆ · · · ⋆ ︸ ︷︷ ︸
p − i

0 · · · 0
]⊤

, Hi
p =

[︸ ︷︷ ︸
p − i

0 · · · 0 ︸ ︷︷ ︸
i + 1

⋆ · · · ⋆
]⊤

,

with nonzero entries ⋆. Taking D ∈ Rp+1×2n as:

D ≜
[
H0

0 H1
0 . . . Hγ−1

0 H0
p H1

p . . . Hγ−1
p

]
,

in the case that p ≥ 2γ − 1 the columns are linearly
independent and thus the matrix D has full column rank,
implying that a solution p exists (but is not unique unless
p = 2γ − 1).

Remark 1. In the case that p > 2γ − 1, the constraint (9)
is under-determined and can be resolved via a least squares
solution, allowing for additional cost terms to be optimized.

Finally, we present one additional property which will
be useful in increasing the resolution of Bézier curves and
reduce the conservatism of their upper bounds. To do this,
we introduce the notion of a refinement of the interval I as:

Definition 4. A k-refinement of an interval [0, T] is a
collection of times {Ti} for i = 0, . . . , k and associated
intervals {[Ti−1, Ti]} with Ti−1 < Ti, T0 = 0, and Tk = T .

From this, we can split a Bézier polynomial B(·) into a
sequence of B-splines:

Property 4 (Splitting [18]). Given the control points P
of a Bézier polynomial defined over the interval I and
a k-refinement of I , there exists a collection of matrices
{Qi} for i = 1, . . . , k such that BQ(t) = PQz(t) satisfies
BQ(t) ≜ B(Ti +

t
T (Ti+1 − Ti)) for all t ∈ I .

Finally, it will be useful to operate with the (column-wise)
vectorized versions of p and P, defined as p⃗ ≜ vec(p) ∈
Rm(p+1) and P⃗ ≜ vec(P) ∈ Rn(p+1). With these new
representations, we have the following equivalences:

P⃗ = H⃗p⃗

D⃗p⃗ = vec
([
x⊤
0 x⊤

T

])
with H⃗ and D⃗ the vectorized versions of H and D,
respectively. With these tools, we will next discuss how
to enforce state and input constraints on Bézier curves via
linear constraints imposed on the control points.

IV. STATE AND INPUT CONSTRAINT SATISFACTION

To begin, we make the following assumption about the
constraint sets CX and CU :

Assumption 2. The state constraint set is described by
CX = {xd ∈ Xd | Cxd ≤ d} with C ∈ Rk×n and
d ∈ Rk. Furthermore, we have that the input constraint
set CU ≜ {u ∈ Rm | ∥u∥∞ ≤ umax} for umax ∈ R>0, i.e.,
we have a box input constraint.

The following constructions can also be performed with
a positive diagonal weighting matrix W ∈ Sm≻0 to scale
the box constraint on u, such that ∥Wu∥∞ ≤ umax. Such
constraints are extremely common in robotic systems. From
this point on, ∥ · ∥ will represent the ∞−norm unless
otherwise stated. Given a tracking certificate set, we can
define its upper bound e : Ud → R≥0 as:

e(ud) ≜ sup
e∈E(ud)

∥e∥. (10)

If E is described as the zero sublevel set of a function that
is differentiable with respect to ud, then e(ud) is locally
Lipschitz with respect to ud. Along with this, we assume
Lipschitz properties of Π and Ψ:

Assumption 3. The functions Π, Ψ, and e are Lipschitz
continuous over the domain CX with constants LΠ, LΨ and
Le, respectively.

The remainder of the section will be devoted to proving
the following statement:

Theorem 1. Let system Σd be a planning model for system
Σ with tracking certificate E . There exist matrices F and G
such that any Bézier curve B : I → Xd with control points
p satisfying:

Fp⃗ ≤ G,

when tracked results in the closed loop system satisfying
Π(xcl) ∈ CX and k(xcl,xd,ud) ∈ CU for all t ∈ I .

Towards this goal, we first show that satisfying input
constraints of the tracker can be reformulated as a linear
constraint on state and input norms:

Lemma 1. Given a reference points x̄d ∈ Xd, enforcing the
constraint:[
Lk(1 + LΨ) Lk(1 + Le)

] [∥xd − x̄d∥
∥ud∥

]
≤ umax −K(x̄d),

with K(x̄d) ≜ ∥k(Ψ(x̄d), x̄d,0)∥ + e(0) results in input
constraints being satisfied, i.e. k(xcl,xd,ud) ∈ CU .

Proof. Observe that the input k can be bounded by:

∥k(x,xd,ud)∥ ≤ Lk(∥x−Ψ(xd)∥+ ∥Ψ(xd)−Ψ(x̄d)∥
+ ∥ud∥+ ∥xd − x̄d∥) + ∥k(Ψ(x̄d), x̄d,0)∥
≤ Lk(1 + Le)∥ud∥+ Lk(1 + LΨ)∥xd − x̄d∥

+ ∥k(Ψ(x̄d), x̄d,0)∥+ e(0).

Rearranging terms yields the desired result.

We will show in Lemma 3 that this constraint can be
reformulated as a linear inequality constraint on the Bézier
curve xd(·). Note that in order for this set to be nonempty,
we must have that umax − e(0) > 0. This requirement is
one of feasibility of the tracking controller – if not, then
the feedback controller applied over the tracking certificate
E is larger than the set U meaning regardless of desired
trajectory there could exist a perturbed state which would
violate the input constraints. If this is the case, then the
error tracking bound of the low-level controller needs to
be improved before proceeding. In order to make a similar
claim for state constraints, we present the following claim:

Lemma 2. Enforcing the constraint:[
C LΠLeK

] [xd

∥ud∥

]
≤ d− LΠe(0)K (11)

with K ≜
√

diag(CC⊤) results in state constraints being
satisfied, i.e. Π(xcl(t)) ∈ CX .

Proof. Recall that applying the controller k yields:

Π(xcl) ∈ Ω ≜
{
Π(Ψ(xd) + v) | v ∈ E(ud)

}
,

which holds from Definition 2. From (10), we continue:

Ω ⊂
{
Π(Ψ(xd) + v) | ∥v∥ ≤ e(ud)

}
≡

{
xd + y | y = Π(Ψ(xd) + v)− xd, ∥v∥ ≤ e(ud)

}
⊂

{
xd + y | ∥y∥ ≤ ∥Π(Ψ(xd) + v)− xd∥, ∥v∥ ≤ e(ud)

}
.

Next, recalling that Π ◦Ψ(xd) = xd, we have:

Ω ⊂
{
xd + y | ∥y∥ ≤ LΠ∥v∥, ∥v∥ ≤ e(ud)

}
⊂

{
xd + y | ∥y∥ ≤ LΠe(ud)

}
Therefore, defining ρ ≜ LΠe(ud), we have:

Π(xcl) ∈ xd(t)⊕Bρ(0),

As such, if we can ensure C(xd+v) ≤ d for all v ∈ Bρ(0),
we would have the desired result. Appealing to Lemma 4
in [12], we know that this is satisfied if:

Cxd ≤ d− LΠe(ud)
√

diag(CC⊤),

which is in turn satisfied if:

Cxd ≤ d−
(
LΠLe∥ud∥+ LΠe(0)

)√
diag(CC⊤),

which can be rearranged to achieve the desired result.

Now, we state the following Lemma, which will allow
us to reformulate these state and input constraints via linear
constraints on the Bézier curve:

Lemma 3. Given a reference point x̄d ∈ Xd, a matrix
A ∈ Rk×n+2 and vector b ∈ Rk, there exists a matrix
L ∈ R4knm×n and a vector h ∈ R4knm such that:

L

[
xd

q
(γ)
d

]
≤ h =⇒ A

 xd

∥xd − x̄d∥
∥ud∥

 ≤ b.

Proof. We begin by bounding the term ud(·):

∥ud∥ ≤ ∥gd(xd)
−1∥∥q(γ)

d − fd(xd)∥. (12)

Taking x̄d ∈ Xd to be a reference point in the planning state
space, we can bound the first term by:

∥g−1(xd)∥ ≤ LG∥xd − x̄d∥+ ∥g−1(x̄d)∥, (13)

where LG is a Lipschitz constant of g−1 with respect to
the ∞-norm on CX , which is well defined by the local
Lipschitz continuity and nonzero assumptions on g and the
compactness of CX . Similarly:

∥q(γ)
d − f(xd)∥ ≤ Lf∥xd − x̄d∥+ ∥q(γ)

d − f(x̄d)∥. (14)

Now, let a ≜
[
a1 a2 a3

]
be a row of the constraint

matrix A with a1 ∈ Rn and a2, a3 ∈ R and b ∈ R the
corresponding entry of the vector b. Substituting (13) and
(14) into (12), we can construct a quadratic form:[

a2 a3
] [∥xd − x̄d∥

∥ud∥

]
≤ σ⊤Mσd +N⊤σd,

where σd ≜
[
∥xd − x̄d∥ ∥q(γ)

d − f(x̄d)∥
]⊤

and:

M =
a3
2

[
2LGLf LG
LG 0

]
, N =

[
a3Lf∥g−1(x̄d)∥+ a2

a2∥g−1(x̄d)∥

]
.

Next, consider M̂ as the projection of M onto the positive
semidefinite cone. With this, we can define the function

h : Xd × Rm → R as:

h(xd,q
(γ)
d) = σ⊤

d M̂σd +N⊤σd + a⊤1 xd.

Because M is symmetric, we have that M̂ ⪯ M. As such,
points in the set Ω ≜ {(xd,q

(γ)
d) | h(xd,q

(γ)
d) ≤ b} satisfy

the desired inequality. Next, consider a function ℓ : Xd ×
Rm → R of the form:

ℓ(xd,q
(γ)
d) = c⊤σd + a⊤1 xd,

for some vector c ∈ R2, along with the following optimiza-
tion program:

δ∗ = sup
δ∈R

δ

s.t. ℓ(xd,q
(γ)
d) ≤ δ =⇒ h(xd,q

(γ)
d) ≤ b

In general, this set containment problem may be challenging
to solve; however, given the specific problem structure this
can be solved for in closed form (the details of which
can be found in [19]). Then, we have that the set Λ ≜
{(xd,q

(γ)
d) | ℓ(xd,q

(γ)
d) ≤ δ∗} ⊂ Ω; therefore points in Λ

satisfy the desired constraints.
Finally, we will show that there exists a matrix Li ∈

R4nm×n+m and a vector hi ∈ R4nm such that:

Li

[
xd

q
(γ)
d

]
≤ hi ⇒ ℓ(xd,q

(γ)
d) ≤ δ∗.

Based on the definition of σd, the set Λ is given by:

c⊤

[
maxi |xd − x̄|i

maxi

∣∣∣q(γ)
d − f(x̄)

∣∣∣
i

]
+ a⊤1 xd ≤ δ∗,

which, taking c⊤ = [c1, c2], is equivalent to:[
c1 c1 −c1 −c1
c2 −c2 c2 −c2

]⊤
︸ ︷︷ ︸

≜F⊤

[
(xd − x̄)i(

q
(γ)
d − f(x̄)

)
j

]
+ a⊤1 xd ≤ δ∗,

for all row pairs i ≤ n and j ≤ m and where δ∗ ≜
δ∗⊗1 with ⊗ denoting the Kronecker product. Letting Li ∈
{0, 1}4nm×n+m be matrices capturing the i, j permutations
of the scaling matrix F⊤ above, we can reformulate this as:[

L1 L2

] [xd − x̄

q
(γ)
d − f(x̄)

]
+ (a⊤1 ⊗ 1)xd ≤ δ∗,

which can be further rearranged as:[
L1 + a⊤1 ⊗ 1 L2

]︸ ︷︷ ︸
≜Li

[
xd

q
(γ)
d

]
≤ δ∗ +

[
L1 L2

] [x̄d

f(x̄d)

]
︸ ︷︷ ︸

≜hi

.

Repeating this process for each of the k rows of the
constraint matrix A yields the desired result.

The previous Lemma demonstrates that the inequalities
on the desired trajectory xd(·) imposed by state and input
constraints can be framed as affine constraints on the space
of possible trajectories. As curves are infinite dimensional
objects, traditional trajectory optimizers would generally

only approximately enforce these constraints. This is pre-
cisely where we see the usefulness of Bézier curves – we
can exactly enforce these constraints on the continuous-
time curve by reasoning about a discrete, low-dimensional
collection of Bézier control points (as captured by Property
2). With this in mind, we are now equipped to prove the
main statement of the section:

(Proof of Theorem 1). Enforcing the constraint in Lemma
1 will result in ∥k(xcl,xd,ud)∥∞ ≤ umax. Furthermore,
from Lemma 2, we know that enforcing (11) results in
Π(xcl(t)) ∈ CX . Combining these state and input con-
straints and leveraging Lemma 3 to produce matrices Lx,Lu

and vectors hx,hu results in:[
Lu

Lx

] [
xd

q
(γ)
d

]
≤

[
hu

hx

]
. (16)

Based on Property 2, we know that if we enforce this
constraint on the control points, it will be enforced for the
continuous time curve. Therefore, instead we must enforce:[

Lu

Lx

] [
(P)j

(pHγ)j

]
≤

[
hu

hx

]
.

for j = 0, . . . , p. As this imposes linear constraints on the
columns of p, this can be vectorized and written as:

Fp⃗ ≤ G,

where F and G are appropriate reformulations of (16) to ac-
count for the vectorization. Enforcing this constraint results
in state and input constraint satisfaction as desired.

V. BÉZIER REACHABLE POLYTOPES

Given the constructions in Section IV, there exists an
affine inequality that guarantees the existence of a Bézier
polynomial which results in the closed-loop planner-tracker
system satisfying state and input constraints. The matrix
F and vector G represent an efficient oracle to check
whether Bézier curves connecting initial and terminal points
satisfy these constraints. Combining this affine constraint
with Property 3 allows us to place constraints on the desired
boundary conditions of the Bézier polynomial – that is,
given an initial condition x0, the set characterized by:

F(x0) = {xd ∈ Xd | FD⃗† [x⊤
0 x⊤

T

]⊤ ≤ G},

represents all terminal conditions for which there exists a
feasible Bézier polynomial. As such, the set F(x0) can
be thought of as the forward reachable set of the point
x0. Similarly, given a terminal condition xT , the backward
reachable set is characterized by:

B(xT) = {x0 ∈ Xd | FD⃗† [x⊤
0 x⊤

T

]⊤ ≤ G}.

A depiction of the forward reachable set for a pendulum
system and a variety of system parameters can be seen
in Figure 3. As the error tracking tube E varies in its
dependence on ud, the reachable sets change shape to ensure
that closed loop system still satisfies the desired constraints.

Fig. 3. A selection of Bézier curves and forward reachable sets. The top
row depicts curves with exact tracking, the middle row with a fixed size
tracking certificate, and the bottom row with a tracking certificate whose
upper bound scales linearly with the planning input ud.

A. Reducing Conservatism

In the previous discussion, we used a reference point x̄d

and bounded the deviation of a trajectory from this point.
While this enables tractability, it creates conservatism in
the bound as the same reference point was used over the
entire trajectory xd(·). To resolve this conservatism, we
would like to instead bound the trajectory with a collection
of reference points {x̄k} spread out over the time interval
[0, T]. Towards this goal, we leverage the notion of a k-
refinement of the interval [0, T] from Definition 4 as well
as reference points {x̄i} for i = 1, . . . k With these, we can
construct a piecewise constant reference trajectory x̄(t) =
x̄i for t ∈ [Ti−1, Ti) with i = 1, . . . , k. With this reference
trajectory, we have the following:

Corollary 1. Let system Σd be a planning model for
a system Σ with tracking certificate E , and consider a
piecewise-constant trajectory x̄(t) defined with respect to
a k−refinement of the interval [0, T]. There exist matrices
F̂ and Ĝ such that any Bézier curve B : I → Xd with
control points p satisfying:

F̂p⃗ ≤ Ĝ, (17)

when tracked results in the closed loop system satisfying
Π(xcl(t)) ∈ CX and k(xcl(t),xd(t)) ∈ CU for all t ∈ I .

Proof. As refinement is linear in the control points, we can
leverage the matrices from Theorem 1 and right multiply F
by Q⃗i, the vectorized version of the refinement matrix Qi

for i = 1, . . . , k to produce F̂. Taking Ĝ = Ĝ yields the
desired result.

Fig. 4. A depiction of the forward reachable sets as a function of system
parameters. (Top Row) 1-step reachable sets, as in Theorem 1. (Bottom
Row) 20-step reachable sets, as in Corollary 1. (Left Column) Varying the
input constraint umax (Middle Column) Varying the time horizon T (Right
Column) Varying the initial condition.

By enforcing the constraint in (17), we are able to ensure
that the desired trajectory stays close to the piecewise con-
stant reference trajectory, as opposed to a single reference
point. This will reduce the conservatism of the bound, but
requires increasing the number of constraints needed (and
therefore faces of the polytope), demonstrating an obvious
tradeoff. A depiction in the difference in resulting reachable
sets can be seen in Figure 4. When a single points is used,
the reachable set indicates the neighborhood around which
that reference point can be feedback linearized, potentially
requiring significant input over long time horizons. Instead,
if we have a sequence of points, we can forward simulate the
drift dynamics to produce reference trajectories, whereby
the reachable set represents the neighborhood around the
trajectory which we can converge to, thereby reducing
conservatism. This notion is especially useful when using
such reachable sets to represent an MPC layer, which often
uses a sequence of reference points to linearize around.

VI. RESULTS

A. Simulation Results

We deploy the use of Bézier Reachable Polytopes towards
the task of swinging up the pendulum. The duration of
planning horizon needed to accomplish this task depends
highly on how tight the input constraint for the system is.
In this setup, the tracker was taken to be the feedback
linearizing controller, and the planner produced trajecto-
ries on the pendulum dynamics. This planner-tracker was
interfaced with a graph-search problem, which samples
states uniformly from the state space and connects two
vertices vi,vj ∈ Xd with an edge if the intersection
of their forward and reachable sets were nonempty, i.e.
F(vi)∩B(vj) ̸= ∅. This represents a graph of dynamically
feasible Bézier curves, whereby a suitable Bézier curve
between two boundary conditions can be found by solving
a discrete graph search problem. As seen in Figure 5, when
the low level input constraints are tight, the graph search has
to produce a long sequence of points to achieve pendulum
swingup. Instead, if the input constraints are loose, then
a nearly direct swingup behavior can be achieved. In this

Fig. 5. The proposed method applied to the pendulum swingup problem.
As the input bounds are tightened from 5 Nm (bottom) to 0.5 Nm (top),
the resulting graph search trajectory increases in complexity and length.

way, we observe that the computational complexity of the
decision making layer is imposed by the limitations of the
underlying full order system. The code for this project is
available at [19].

B. Hardware Results

We also deploy the Bézier Reachable Polytopes frame-
work towards the control of a 3D hopping robot, ARCHER
[20], as seen in Figure 6. Let (p, q) ∈ R3 × S3 denote the
global position and quaternion of the robot, and (v,ω) ∈
R3 × s3 the global linear velocity and body frame angular
rates. The full state of the robot x ∈ X ⊂ R20 contains
these values, as well as foot and flywheel positions and
velocities. Planning long-horizon tasks for this robot is
extremely challenging due to the large number of passive
degrees of freedom, tight input constraints, and hybrid
dynamics. Separating the path planning problem into a
layered architecture consisting of a tracking controller, a
planner, and a decision layer enables this task to be split
up, whereby behavior can be generated efficiently.

In this setup, we take the planning model to be a double
integrator with state xd ∈ Xd ≜ R4 and input ud ∈ Ud ≜
R2. This planning model Σd can be corresponded with the
hopping robot Σ by a projection map Π : X → R4 taken
to be the restriction of the full order state to the center of
mass x and y positions and velocities and an embedding
Ψ, which is a Raibert-style controller that takes in desired
center of mass state and input trajectories and produces
desired orientation quaternions as:

qd(x, t) = Kfb(Π(x)− xd(t))

with desired angular rates ωd ≡ 0. This desired quaternion

Fig. 6. Hardware results on the 3D hopping robot, ARCHER. When commanded to cross the room, a naive decision making layer provides a setpoint
to the planner which is outside what is achievable by the low-level system, leading to system failure. Instead, if Bézier Reachable Polytopes are used,
the decision layer provides a sequence of waypoints to the planner that results in completion of the objective while satisfying state and input constraints.

is then tracked by a low-level controller k as:

k(x, qd,ud) = −KpIm(q−1
d q)−Kd(ω − ωd) +Kffud,

which runs at 1 kHz. As seen in Figure 6, if only the
feedback layer is used, the system fails because the desired
setpoint is outside the region of what can be accomplished
by the tracking system. Instead, if the proposed method
is used, the decision layer can autonomously produce a
sequence of points which maintain stability and constraint
satisfaction over the task.

VII. CONCLUSION

In this work, we introduced the concept of Bézier Reach-
able Polytopes, which provide a representation of the set of
points that can be reached by planner-tracker control frame-
works. By leveraging the properties of Bézier polynomials,
we showed that this set can be efficiently represented via
a polytopic constraint, enabling computationally tractable
long-horizon planning to be achieved. Future work includes
developing an abstract theory for such hierarchical control
systems and their interconnections.

VIII. ACKNOWLEDGEMENTS

The authors would like to thank Andrew Taylor, Preston
Culbertson, and Max Cohen for their many fruitful discus-
sions and William Compton for his assistance both with
theory with experiments.

REFERENCES

[1] N. Matni, A. D. Ames, and J. C. Doyle, “A quantitative framework for
layered multirate control: Toward a theory of control architecture,”
IEEE Control Systems Magazine, vol. 44, no. 3, pp. 52–94, 2024.

[2] S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Per-
menter, T. Koolen, P. Marion, and R. Tedrake, “Optimization-based
locomotion planning, estimation, and control design for the atlas
humanoid robot,” Autonomous robots, vol. 40, pp. 429–455, 2016.

[3] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter,
“Perceptive locomotion through nonlinear model-predictive control,”
IEEE Transactions on Robotics, vol. 39, no. 5, pp. 3402–3421, 2023.

[4] G. Pappas, G. Lafferriere, and S. Sastry, “Hierarchically consistent
control systems,” IEEE Transactions on Automatic Control, vol. 45,
no. 6, pp. 1144–1160, 2000.

[5] A. Girard and G. J. Pappas, “Hierarchical control system design using
approximate simulation,” Automatica, vol. 45, no. 2, pp. 566–571,
2009.

[6] A. van der Schaft, “Equivalence of dynamical systems by bisimula-
tion,” IEEE Transactions on Automatic Control, vol. 49, no. 12, pp.
2160–2172, 2004.

[7] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control:
Theory, Computation, and Design. Nob Hill Publishing, 2017.

[8] D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust model predic-
tive control of constrained linear systems with bounded disturbances,”
Automatica, vol. 41, no. 2, pp. 219–224, 2005.

[9] M. Chen, S. L. Herbert, H. Hu, Y. Pu, J. F. Fisac, S. Bansal, S. Han,
and C. J. Tomlin, “Fastrack:a modular framework for real-time
motion planning and guaranteed safe tracking,” IEEE Transactions
on Automatic Control, vol. 66, no. 12, pp. 5861–5876, 2021.

[10] A. Wu, S. Sadraddini, and R. Tedrake, “R3t: Rapidly-exploring
random reachable set tree for optimal kinodynamic planning of
nonlinear hybrid systems,” in 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020, pp. 4245–4251.

[11] E. D. Sontag, “Input to state stability: Basic concepts and results,” in
Nonlinear and Optimal Control Theory. Springer, 2008, pp. 163–
220.

[12] N. Csomay-Shanklin, A. J. Taylor, U. Rosolia, and A. D. Ames,
“Multi-rate planning and control of uncertain nonlinear sys-
tems: Model predictive control and control lyapunov functions,”
arXiv:2204.00152, 2022.

[13] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion
planning,” Journal of the ACM, vol. 40, no. 5, pp. 1048–1066, Nov.
1993.

[14] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Plan-
ning,” The International Journal of Robotics Research, vol. 20, no. 5,
pp. 378–400, May 2001.

[15] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptoti-
cally optimal motion planning for robots with linear dynamics,” in
2013 IEEE International Conference on Robotics and Automation.
Karlsruhe, Germany: IEEE, May 2013, pp. 5054–5061.

[16] T. Marcucci, P. Nobel, R. Tedrake, and S. Boyd, “Fast Path
Planning Through Large Collections of Safe Boxes,” May 2023,
arXiv:2305.01072 [cs, eess].

[17] M. E. Flores Contreras, “Real-time trajectory generation for con-
strained nonlinear dynamical systems using non-uniform rational
b-spline basis functions,” Ph.D. dissertation, California Institute of
Technology, 2008.

[18] M. Kamermans, “A primer on bézier curves,” (online book), 2020.
[Online]. Available: https://pomax.github.io/bezierinfo/

[19] “Code,” 2024. [Online]. Available: https://github.com/noelc-s/
BezierTubes

[20] E. R. Ambrose, “Creating ARCHER: A 3D Hopping Robot with Fly-
wheels for Attitude Control,” Ph.D. dissertation, California Institute
of Technology, 2022.

https://pomax.github.io/bezierinfo/
https://github.com/noelc-s/BezierTubes
https://github.com/noelc-s/BezierTubes

	Introduction
	Background
	Bézier Curves
	State and Input Constraint Satisfaction
	Bézier Reachable Polytopes
	Reducing Conservatism

	Results
	Simulation Results
	Hardware Results

	Conclusion
	Acknowledgements
	References

