
Layered Control Architectures:
Constructive Theory and Application to Legged Robots

Thesis by
Noel Csomay-Shanklin

In Partial Fulfillment of the Requirements for the
Degree of

Doctor of Philosophy, Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY
Pasadena, California

2025
Defended May 28, 2025

ii

© 2025

Noel Csomay-Shanklin
ORCID: 0000-0002-2361-1694

All rights reserved

iii

ACKNOWLEDGEMENTS

I would be remiss if I didn’t begin by thanking my parents, Enikő Csomay and Trevor
Shanklin, for their plentiful support throughout my many, many years of schooling.
Between encouraging me to keep working and to keep taking breaks, respectively,
I’ve been able to find myself as a researcher, and as a person. Thank you also to
the rest of my family, those still with us and those no longer — George and Doreen
Shanklin, Chris Shanklin, Maria Horváth, and Tibor Csomay.

To my advisor, Aaron Ames, it has been almost ten years since we first met. I am
grateful for the opportunity you’ve given me to develop into the researcher that I
am today — my world is brighter knowing what I know now. To my undergraduate
advisor, Aaron Young, thank you for giving me the platform and guidance to get me
started with research. Thank you also to the many mentors I had in industry along
the way — Alex Brinkman, Lanny Smoot, and Farbod Farshidian.

This experience would have paled in comparison to what it was without those around
me in and out of the lab. To my mentors along the way, I thank you for your guidance
and help. Eric Ambrose, you were the first one to take a chance on me. Under your
mentorship, I developed from machining blocks of metal to getting my feet wet with
control. The summer I spent working with you at Caltech was a true highlight and
convinced me that I wanted to go to grad school. Wen-Loong Ma, you took me in
as an undergrad when I was in my first year, and exposed me to so much knowledge
and experience. You jump-started my research career, and I still think about your
mentorship. Jenna Reher, you showed me how to make beautiful figures, and I
learned so much from you during our shared internship. Maegan Tucker, thank you
for enduring endless research debates and always being good company in the lab.

Andrew Taylor, when I decided I wanted to dip my toes into theory, you welcomed
me with open arms. From being a tolerant TA to an encouraging collaborator, I
will always hold the precision of thought and mathematical rigor that you instilled
in me. Ugo Rosolia, along the way you guided me into the ways of optimal control,
MPC, and a hierarchical perspective. Your research philosophy shaped much of
my outlook on control. To the other postdocs in the lab — Preston Culbertson,
Vince Kurtz, Jeesop Kim, Jaemin Lee, Ryan Bena, Pio Ong, Max Cohen — I’ve
enjoyed our many conversations, and each discussion has carved a new facet into
my understanding of the fields of robotics and control.

iv

To my peers, thanks for the time we spent together, split equally between laughs and
commiserations. Ryan Cosner, a good friend and colleague, we are in it from the
start to the end. Wyatt Ubellacker, for showing me that it is ok to still code in Vim,
for many discussions and projects together, and for referring me to my upcoming
job. Amy Li, for our conversations, coffee runs, and walks around campus. Will
Compton, you’ve been a great partner in crime, and I hope I haven’t soiled your
research outlook too much. From the 100th hopper experiment to blackboards
full of math, the topics we’ve explored together have added so much richness to my
education. This extends to you too Ivan Jimenez Rodriguez — thank you for helping
me get into learning for control. To Min Dai, Skylar Wei, Angela Gao, and Berthy
Feng — the first year would have been significantly more strenuous if it weren’t for
our collective problem set sessions. And to the younger students in the lab — Zach
Olkin, Serigo Esteban, Adrian Boedtker Ghansah, Gilbert Bahati, Albert Li, Gary
Yang — “just keep pushing.”

I would also like to say a resounding thank you to the friends I have made along the
way (besides those listed above, who I also consider friends). For fear of omitting
someone and never being able to add them, I will not list all of you — but you know
who you are. Without you, life would not have the brightness that it does. To the
mountains — you are my refuge, and you keep me sane. Finally, to my partner
Hannah: from tolerating my crazy schedules to our evening dance parties with Kaio
dog, I cherish every moment with you. I can’t wait to continue exploring our shared
passions, and for our future together.

v

ABSTRACT

Fueled in part by the imagination of science fiction, every decade since the 1950s
has expected robots to enter our everyday lives in the subsequent decade. Despite
this anticipation, the widespread adoption of robots has consistently fallen short of
societal expectations. This delay is attributable to the sheer variety of complexities
in robotics — perception, contact-rich dynamics, human-robot interactions. Each
sub-discipline of robotics poses unique challenges that must be addressed to achieve
general autonomy. As progress is made in these sub-fields, it is increasingly im-
portant to adopt a layered architecture perspective that combines isolated controller
blocks into a unified framework.

This thesis argues that on the road to general autonomy, adopting layered archi-
tectures enables three key benefits: efficiency, feasibility, and generalizability. We
root our discussion in a general problem in robotics: the design of a controller that
navigates a robot to a goal state while satisfying all state and input constraints that
are present. Throughout the thesis, we focus on solutions that are both general — ap-
plicable across a wide variety of robotic platforms — and concrete — deployed and
tested on specific hardware platforms. As such, we aim to not only propose a frame-
work for reasoning about this problem, but also methods to synthesize controllers
that solve it in practice for legged robots.

We begin by motivating and formalizing the notion of layered architectures and
use this to build our control stack from the bottom up. We start with low-level
planning and tracking layers that stabilize the system within a tracking tube for
both the actuated and underactuated states of legged robots. We then introduce
high-level planning and tracking layers that generate and follow sparse, dynamically
feasible graphs for coarse global navigation through cluttered environments. By
decomposing the global control problem into interacting levels and layers, each
operating with disparate timescales and system abstractions, we enable tractable,
reliable, and extensible robot autonomy.

Throughout this thesis, an emphasis will be placed on mathematical structure,
constructive synthesis, and experimental validation. We demonstrate that adopting
a layered architecture perspective is not merely an implementation convenience, but
a fundamental organizing principle that can enable true robot autonomy.

vi

PUBLISHED CONTENT AND CONTRIBUTIONS

[1] N. Csomay-Shanklin, W. D. Compton, and A. D. Ames, “Hierarchies in
motion: From layered control architectures to perceptive 3D hopping,” Sub-
mitted to IEEE Transactions on Robotics, 2025,
N.C.-S. architected this project, developed a significant portion of the code
architecture running on the robot, and collaborated on the mathematical
proofs, plotting, and writing of the manuscript.

[2] M. H. Cohen, N. Csomay-Shanklin, W. D. Compton, T. G. Molnar, and
A. D. Ames, “Safety-critical controller synthesis with reduced-order mod-
els,” arXiv preprint arXiv:2411.16479, 2024,
N.C.-S. contributed to some of the mathematical formulations in the manuscript,
and aided with writing and proofreading.

[3] W. D. Compton, N. Csomay-Shanklin, C. Johnson, and A. D. Ames, “Dy-
namic tube mpc: Learning tube dynamics with massively parallel simula-
tion for robust safety in practice,” Submitted to ICRA 2025. arXiv preprint
arXiv:2411.15350, 2024,
N.C.-S. contributed to the design of the project, the experimental demon-
stration, and the writing of the manuscript.

[4] W. D. Compton∗, I. D. J. Rodriguez∗, N. Csomay-Shanklin∗, Y. Yue, and
A. D. Ames, “Constructive nonlinear control of underactuated systems via
zero dynamics policies,” in 2024 IEEE 63rd Conference on Decision and
Control (CDC), IEEE, 2024, pp. 8350–8357,
N.C.-S. collaborated on the design and execution of this project, the mathe-
matical proofs, plotting, and writing of the manuscript, and developed code
that ran on the robot.

[5] N. Csomay-Shanklin and A. D. Ames, “Bezier reachable polytopes: Efficient
certificates for robust motion planning with layered architectures,” Submitted
to ACC 2025. arXiv preprint arXiv:2411.13506, 2024,
N.C.-S. designed this project, completed the mathematical proofs, and wrote
the manuscript.

[6] N. Csomay-Shanklin, W. D. Compton, and A. D. Ames, “Dynamically feasi-
ble path planning in cluttered environments via reachable bezier polytopes,”
Submitted to ICRA 2025. arXiv preprint arXiv:2411.13507, 2024,
N.C.-S. designed this project, developed a significant portion of the code
architechture running on the robot, and collaborated on the mathematical
proofs, plotting, and writing of the manuscript.

[7] N. Csomay-Shanklin∗, W. D. Compton∗, I. D. J. Rodriguez∗, E. R. Ambrose,
Y. Yue, and A. D. Ames, “Robust agility via learned zero dynamics poli-
cies,” in 2024 IEEE/RSJ International Conference on Intelligent Robots and

vii

Systems (IROS). arXiv preprint arXiv:2409.06125, IEEE, 2024, pp. 9116–
9123,
N.C.-S. collaborated on the design and execution of this project, the mathe-
matical proofs, plotting, and writing of the manuscript, and developed code
that ran on the robot.

[8] I. Incer, N. Csomay-Shanklin, A. D. Ames, and R. M. Murray, “Layered
control systems operating on multiple clocks,” IEEE Control Systems Let-
ters, 2024,
N.C.-S. wrote code that ran on the robot and aided with writing and proof-
reading.

[9] W. Ubellacker, N. Csomay-Shanklin, and A. D. Ames, “Approximating
regions of attraction via flow-control barrier functions and constrained
polytope expansion,” in 2024 American Control Conference (ACC), 2024,
pp. 3383–3390. doi: 10.23919/ACC60939.2024.10644985,
N.C.-S. contributed to some of the mathematical formulations in the manuscript,
and aided with writing and proofreading.

[10] N. Csomay-Shanklin, V. D. Dorobantu, and A. D. Ames, “Nonlinear model
predictive control of a 3D hopping robot: Leveraging lie group integrators
for dynamically stable behaviors,” in 2023 IEEE International Conference
on Robotics and Automation (ICRA), IEEE, 2023, pp. 12 106–12 112,
N.C.-S. architechted this project, developed a significant portion of the code
architechture running on the robot, and collaborated on the mathematical
proofs, plotting, and writing of the manuscript.

[11] M. Tucker, N. Csomay-Shanklin, and A. D. Ames, “Robust bipedal loco-
motion: Leveraging saltation matrices for gait optimization,” in 2023 IEEE
International Conference on Robotics and Automation (ICRA), IEEE, 2023,
pp. 12 218–12 225,
N.C.-S. ran hardware experiments and aided with revisions on the manuscript.

[12] Y. Chen, U. Rosolia, W. Ubellacker, N. Csomay-Shanklin, and A. D. Ames,
“Interactive multi-modal motion planning with branch model predictive
control,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5365–
5372, 2022,
N.C.-S. aided with experiments, and helped proofread the manuscript.

[13] N. Csomay-Shanklin, M. Tucker, M. Dai, J. Reher, and A. D. Ames, “Learn-
ing controller gains on bipedal walking robots via user preferences,” in 2022
International Conference on Robotics and Automation (ICRA), IEEE, 2022,
pp. 10 405–10 411,
N.C.-S. collaborated on the design and execution of this project, plotting,
and writing of the manuscript, and wrote code that ran on the robot.

[14] N. Csomay-Shanklin∗, A. J. Taylor∗, U. Rosolia, and A. D. Ames, “Multi-
rate planning and control of uncertain nonlinear systems: Model predictive
control and control lyapunov functions,” in 2022 IEEE 61st Conference on

https://doi.org/10.23919/ACC60939.2024.10644985

viii

Decision and Control (CDC), IEEE, 2022, pp. 3732–3739,
N.C.-S. collaborated on the design and execution of this project, the mathe-
matical proofs, plotting, and writing of the manuscript.

[15] M. Y. Galliker∗, N. Csomay-Shanklin∗, R. Grandia, A. J. Taylor, F. Farshid-
ian, M. Hutter, and A. D. Ames, “Planar bipedal locomotion with nonlinear
model predictive control: Online gait generation using whole-body dynam-
ics,” in 2022 IEEE-RAS 21st International Conference on Humanoid Robots
(Humanoids), IEEE, 2022, pp. 622–629,
N.C.-S. collaborated on the design and execution of this project, plotting,
and writing of the manuscript, and wrote code that ran on the robot.

[16] I. D. J. Rodriguez∗, N. Csomay-Shanklin∗, Y. Yue, and A. D. Ames, “Neural
gaits: Learning bipedal locomotion via control barrier functions and zero
dynamics policies,” arXiv preprint arXiv:2204.08120, 2022,
N.C.-S. collaborated on the design and execution of this project, plotting,
and writing of the manuscript, and wrote code that ran on the robot.

[17] N. Csomay-Shanklin∗, R. K. Cosner∗, M. Dai∗, A. J. Taylor, and A. D. Ames,
“Episodic learning for safe bipedal locomotion with control barrier func-
tions and projection-to-state safety,” in Learning for dynamics and control,
PMLR, 2021, pp. 1041–1053,
N.C.-S. collaborated on the design and execution of this project, the mathe-
matical proofs, plotting, and writing of the manuscript, and developed code
that ran on the robot.

[18] W.-L. Ma, N. Csomay-Shanklin, S. Kolathaya, K. A. Hamed, and A. D.
Ames, “Coupled control lyapunov functions for interconnected systems, with
application to quadrupedal locomotion,” IEEE Robotics and Automation
Letters, vol. 6, no. 2, pp. 3761–3768, 2021,
N.C.-S. aided with experiments, helped proofread the manuscript, and wrote
code that ran on the robot.

[19] Y. Sun, W. L. Ubellacker, W.-L. Ma, X. Zhang, C. Wang, N. Csomay-Shanklin,
M. Tomizuka, K. Sreenath, and A. D. Ames, “Online learning of unknown
dynamics for model-based controllers in legged locomotion,” IEEE Robotics
and Automation Letters, vol. 6, no. 4, pp. 8442–8449, 2021,
N.C.-S. aided with experiments, and helped proofread the manuscript.

[20] M. Tucker, N. Csomay-Shanklin, W.-L. Ma, and A. D. Ames, “Preference-
based learning for user-guided hzd gait generation on bipedal walking
robots,” in 2021 IEEE International Conference on Robotics and Automa-
tion (ICRA), IEEE, 2021, pp. 2804–2810,
N.C.-S. contributed to some of the mathematical formulations in the manuscript,
and aided with writing and proofreading, and wrote code that ran on the
robot.

ix

[21] W. Ubellacker, N. Csomay-Shanklin, T. G. Molnar, and A. D. Ames, “Veri-
fying safe transitions between dynamic motion primitives on legged robots,”
in 2021 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), IEEE, 2021, pp. 8477–8484,
N.C.-S. contributed to some of the mathematical formulations in the manuscript,
and aided with writing and proofreading.

[22] W.-L. Ma, N. Csomay-Shanklin, and A. D. Ames, “Coupled control systems:
Periodic orbit generation with application to quadrupedal locomotion,” IEEE
Control Systems Letters, vol. 5, no. 3, pp. 935–940, 2020,
N.C.-S. aided with experiments, helped proofread the manuscript, and wrote
code that ran on the robot.

[23] W.-L. Ma, N. Csomay-Shanklin, and A. D. Ames, “Quadrupedal robotic
walking on sloped terrains via exact decomposition into coupled bipedal
robots,” in 2020 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2020, pp. 4006–4011,
N.C.-S. aided with experiments, helped proofread the manuscript, and wrote
code that ran on the robot.

[24] J. Reher, N. Csomay-Shanklin, D. L. Christensen, B. Bristow, A. D. Ames,
and L. Smoot, “Passive dynamic balancing and walking in actuated environ-
ments,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2020, pp. 9775–9781,
N.C.-S. aided with experiments, helped proofread the manuscript, and wrote
code that ran on the robot.

[25] E. Ambrose, N. Csomay-Shanklin, Y. Or, and A. D. Ames, “Design and
comparative analysis of 1d hopping robots,” in 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), IEEE, 2019,
pp. 5717–5724,
N.C.-S. aided with experiments, helped proofread the manuscript, and
helped with the design of the robot.

x

RELEVANT PUBLISHED VIDEO CONTENT

[1] Quadrupedal robotic walking on sloped terrains. https://youtu.be/
uJedboyzDjc.

[2] Episodic learning for safe bipedal locomotion with control barrier functions
and projection-to-state safety, https://vimeo.com/481809664.

[3] Preference-based learning for user-guided hzd gait generation on bipedal
robots, https://youtu.be/rLJ-m65F6C4.

[4] Learning controller gains on bipedal walking robots via user preferences.
https://youtu.be/jMX5a_6Xcuw?si=w9KSizYj6S16A66F.

[5] Learning to walk by enforcing forward invariance, https://www.youtube.
com/watch?v=8TeXd0AYtpA.

[6] Bipedal locomotion with nonlinear model predictive control, https://
youtu.be/3g8ZNsCWdOA.

[7] 3D hopping with geometric model predictive control, https://youtu.be/
PqjFwrshL-o.

[8] Robust agility via learned zero dynamics policies: 3D hopping. https:
//vimeo.com/923800815.

[9] Obstacle avoidance on a 3D hopping robot, https : / / vimeo . com /
1009702220.

[10] Indoor hopping compilation. https://youtu.be/k3YuoKA4HNk.

[11] Outdoor hopping compilation. https://youtu.be/WnPIML8oG78.

[12] Hierarchies in motion: From layered architechtures to perceptive 3D hop-
ping, https://youtu.be/-PHxfJALLS8.

https://youtu.be/uJedboyzDjc
https://youtu.be/uJedboyzDjc
https://vimeo.com/481809664
https://youtu.be/rLJ-m65F6C4
https://youtu.be/jMX5a_6Xcuw?si=w9KSizYj6S16A66F
https://www.youtube.com/watch?v=8TeXd0AYtpA
https://www.youtube.com/watch?v=8TeXd0AYtpA
https://youtu.be/3g8ZNsCWdOA
https://youtu.be/3g8ZNsCWdOA
https://youtu.be/PqjFwrshL-o
https://youtu.be/PqjFwrshL-o
https://vimeo.com/923800815
https://vimeo.com/923800815
https://vimeo.com/1009702220
https://vimeo.com/1009702220
https://youtu.be/k3YuoKA4HNk
https://youtu.be/WnPIML8oG78
https://youtu.be/-PHxfJALLS8

xi

TABLE OF CONTENTS

Acknowledgements . iii
Abstract . v
Published Content and Contributions . vi
Relevant Published Video Content . x
Table of Contents . x
Nomenclature . xiii
Chapter I: Introduction . 1

1.1 Motivation of Layered Architectures 2
1.2 From Nature to Engineering, Layered Architectures are Universal . . 2
1.3 The Pros and Cons of Layered Architectures 4
1.4 Legged Robots as A Case Study for Layered Architectures 5
1.5 Legged Robot Introduction . 11

Chapter II: A Gentle Mathematical Introduction 14
2.1 Nonlinear Dynamics . 15
2.2 Nonlinear Control . 32
2.3 Robotic Systems . 39
2.4 Underactuated Systems . 42
2.5 Optimization . 49
2.6 Bézier Curves . 57

Chapter III: Philosophy of Layered Architectures 62
3.1 Problem Description . 63
3.2 The Pitfalls of Purely Tracking Layers 65
3.3 The Pitfalls of Purely Planning Layers 66
3.4 Hierarchical Solutions . 69
3.5 Layered Control Architecture Definition 71
3.6 Specialization to Robotic Path Planning 73

Chapter IV: Low Level Tracking Layer . 76
4.1 PD Control . 77
4.2 Data-Driven Performance via Preference Based Learning 81
4.3 Data-Driven Safety . 86
4.4 Summary . 92

Chapter V: Low Level Planning Layer . 93
5.1 Offline Trajectory Generation . 94
5.2 Whole Body Model Predictive Control 98
5.3 Model Predictive Control on Manifolds 110
5.4 Learning Walking Behaviors by Enforcing Set Invariance 119
5.5 Zero Dynamics Policies . 126
5.6 Summary . 146

Chapter VI: High Level Tracking Layer . 147

xii

6.1 Bézier MPC . 148
6.2 Bézier Reachable Polytopes . 156
6.3 Summary . 162

Chapter VII: High Level Planning Layer . 163
7.1 Kinodynamic Bézier Graphs . 164
7.2 Nonconvex Path Planning in Real Time 170
7.3 Summary . 173

Chapter VIII: The Complete Architecture 174
8.1 Theory . 175
8.2 Experiment . 179
8.3 Summary . 181

Chapter IX: Conclusion . 182
9.1 Summary of Thesis . 183
9.2 Future Work . 183
9.3 Advice to Younger Students . 184

Bibliography . 185
Index . 203

xiii

NOMENCLATURE

CARE. Continuous Algebraic Riccati Equation.

CBF. Control Barrier Function.

CL. Closed Loop.

CLF. Control Lyapunov Function.

CTLE. Continuous Time Lyapunov Equation.

DARE. Discrete Algebraic Riccati Equation.

DDP. Differential Dynamic Programming.

DTLE. Discrete Time Lyapunov Equation.

E-CBF. Exponential Control Barrier Function.

E-ISS. Exponential Input to State Stability.

ERM. Empirical Risk Minimization.

ES-CLF. Exponentially Stable Control Lyapunov Function.

FB. Feedback.

FBL. Feedback Linearization.

FTOCP. Finite-Time Optimal Control Problem.

GCS. Graph of Convex Sets.

HJB. Hamilton-Jacobi-Bellman.

HZD. Hybrid Zero Dynamics.

IL. Imitation Learning.

iLQR. Iterative Linear Quadratic Regulator.

ISS. Input to State Stability.

LIP. Linear Inverted Pendulum.

LP. Linear Program.

LQR. Linear Quadratic Regulator.

MCMC. Markov Chain Monte Carlo.

xiv

MPC. Model Predictive Control.

OCP. Optimal Control Problem.

ODE. Ordinary Differential Equation.

PBL. Preference Based Learning.

PD. Proportional Derivative.

PDE. Partial Differential Equation.

PID. Proportional Integral Derivative.

PMP. Pontryagin’s Maximum Principle.

PRM. Probabilistic Roadmap.

PSSf. Projection to State Safety.

QP. Quadratic Program.

RL. Reinforcement Learning.

RRT. Rapidly-exploring Random Tree.

SLIP. Spring Loaded Inverted Pendulum.

SOCP. Second-Order Cone Program.

SQP. Sequential Quadratic Programming.

ZD. Zero Dynamics.

ZDP. Zero Dynamics Policies.

ZMP. Zero Moment Point.

Chapter 1: Introduction

Contents
1.1 Motivation of Layered Architectures 2

1.2 From Nature to Engineering, Layered Architectures are Universal 2

1.3 The Pros and Cons of Layered Architectures 4

1.4 Legged Robots as A Case Study for Layered Architectures . . . 5

1.5 Legged Robot Introduction . 11

Layered architectures enable efficient, feasible, and generalizable controller design.

2

1.1 Motivation of Layered Architectures
Fueled in part by the imagination of science fiction, every decade since the 1950s
has anticipated that robots would enter our everyday lives in the subsequent decade.
Despite this, the widespread adoption of robots has consistently fallen short of soci-
etal expectations. Modern robotic systems are capable of impressive demonstrations
in isolation — from running half marathons [1] to autonomously folding laundry [2]
— but they often remain fragile, specialized, and constrained to narrow operational
domains. This gap between expectation and reality — a gap widened by the egos of
engineers and entrepreneurs alike — stems from the sheer variety of complexities
inherent to the field of robotics. Perception systems must interpret noisy, partially
observable states to infer structure of the environment. Planning models must rea-
son about how current actions affect future states under uncertainty and contact-rich
dynamics. Robots must interact with humans in ways that are both explainable and
safe. All sub-disciplines of robotics pose unique challenges that must be addressed
to achieve general autonomy.

Crucially, it is not enough for each subsystem to work well in isolation; their inter-
actions must be coherent to ensure reliable system-level behavior. This challenge is
exacerbated by the fact that each subsystem operates on different timescales, relies
on distinct modeling assumptions, and faces unique sources of uncertainty. While
individual components are implemented independently, their interconnections are
often handled implicitly — ensuring only that one block can be “plugged into”
another. This lack of structured coordination leads to brittle systems that can fail
unexpectedly when implicit assumptions between components are violated.

As progress continues within individual subfields, it becomes increasingly important
to adopt a systems-level perspective — one that makes the interaction between
components explicit and provides tools for reasoning about their coordination. The
road to general autonomy is not via monolithic design, but rather by exploiting
the domain knowledge of each of these sub-disciplines and combining them in a
structured and modular way. This holistic perspective of controller synthesis is
captured by the notion of layered architectures, which combine isolated blocks into
a unified framework.

1.2 From Nature to Engineering, Layered Architectures are Universal
Layered architectures (often referred to as hierarchies) exist in a far broader sense
than just their application to control systems. Social hierarchies emerge naturally

3

across a wide array of species, structuring interactions and enabling cohesion within
groups of animals. Humans themselves are intrinsically hierarchical — the nervous
and muscular systems, for example, combine multiple sensing and actuation modali-
ties to balance the trade-off between speed and flexibility [3]. Even human cognition
is hierarchical [4], splitting attention into slower planning layers and faster feedback
layers. The pervasiveness of layered architectures across nature underscores their
relevance and utility, making them a compelling subject of study.

Within engineered systems, layered architectures are similarly ubiquitous for their
ability to divide and conquer complex tasks by breaking them down into manageable
sub-problems. Early examples of hierarchical controllers appear in the context of
rocket navigation in the 1950s [5] and control of the Apollo Lunar Module in
the 1960s [6], where engineers found that guiding a fast, dynamic vehicle was
best achieved by splitting the control task into a fast inner loop that maintains
stabilization and a slower outer loop that guides towards targets. Around the same
time, Shakey the Robot — the world’s first mobile robot to perceive and reason about
its surroundings — utilized a multi-level control architecture consisting of low-level
feedback loops, mid-level planners, and high-level symbolic reasoning [7]. Shakey
was the first autonomous robot to use a layered architecture, and this three-level
hierarchy still serves as a template for the architectures explored in this thesis.

As the use of control hierarchies became ubiquitous in a broad collection of ap-
plication domains, the need for a theory of these layered architectures also grew.
This need was first addressed in 1970 [8], in which a theory of abstraction and
coordination across levels of hierarchical systems was developed. The motivation
was clear: rather than designing a single controller, complex processes could be
more effectively controlled by an upper level setting targets for lower levels to ex-
ecute. Hierarchical control proved especially advantageous when different levels
could operate at different time scales or levels of detail – a principle that became a
hallmark of modern control engineering.

Today, hierarchies remain a central pillar for controller design — from flight con-
trol systems [9] to the DARPA robotics challenges [10], [11], there are countless
examples of layered architectures used in practice (see [12] for a recent overview).
Given their ubiquitousness, the need for a theory of layered architectures has again
sparked growing interest in recent years, with several works advancing the the-
oretical framework for control hierarchies [13]–[15]. Such theories have ranged
from highly abstract instantiations of blocks and their interconnections [16] to very

4

concrete formulations investigating the trade-off between speed and flexibility in
the coordination of planning and tracking layers [17]. The goal of this thesis is to
follow along this lineage and provide a structured approach to designing, analyzing,
and deploying layered architectures for robotic systems, grounded in theory and
validated through experiment on legged robots.

1.3 The Pros and Cons of Layered Architectures
Layered architectures provide structural advantages that go beyond computational
tractability, offering fundamental benefits that enable scalable, reliable, and adapt-
able robotic behavior. Whether explicitly acknowledged or not, the architectures
underlying modern robotic autonomy rely on a decomposition of the control problem
across levels with differing assumptions, objectives, and operating rates. Hierarchi-
cal control thus emerges not merely as a design choice, but as a structural necessity
for managing the complexity, uncertainty, and computational demands inherent to
modern robotics.

Efficiency
Complex robotic tasks involve reasoning across vast spatial, temporal, and dynamic
scales. Attempting to solve the full problem is typically infeasible due to com-
putational intractability. Layered architectures provide a natural means of divide-
and-conquer: decomposing the global control problem into smaller, more tractable
subproblems that can be solved locally within each level. By appropriately splitting
responsibility, each level can operate on a manageable problem size tailored to its
timescale and abstraction level, enabling efficient computation.

Feasibility
Efficiency alone is insufficient if plans generated at higher levels cannot be realized
by lower levels. When layered architectures are well structured and share information
bidirectionally — waypoints being passed down and certificates of performance
going up — limitations at each level can be systematically accounted for in the
design process. This makes it possible to guarantee feasibility of system-level
behavior, despite the approximations and abstractions present at each individual
level.

Generalizability
Perhaps most importantly, layered architectures enable generalizability — the abil-
ity to transfer components, solution methods, and guarantees across tasks, environ-

5

ments, and systems. Because each level is responsible for a distinct aspect of the
overall control problem, modules can be reused or adapted independently. This
modularity allows systems to adapt to new challenges without the need for complete
redesign of solution strategies.

Philosophical Benefits
Adopting a layered architecture mindset also offers several intangible benefits. First,
it helps engineers fight their own dogmatism — cleanly partitioning behaviors and
objectives allows each component to be evaluated on its own merits, encouraging
the adoption of methods that work rather than methods that conform to a favored
ideology. Second, it serves as a design tool — if a module does not have the
appropriate input/output structure to fit within the hierarchy, it indicates what kind
of block needs to be developed to ensure cohesion. Finally, it enables the separation
of responsibilities within an engineering team — people can work on independent
problems while still making progress to a shared goal.

Limitations
Although there is elegance in splitting and coordination, the benefits of layered
architectures come at a cost. Decomposing the problem into levels, each operating on
assumptions and abstractions of those around it, inevitably introduces suboptimality
when compared to globally designed solutions. This trade-off is central to layered
architectures: what we lose in global optimality, we gain in modularity, scalability,
and real-time feasibility. In many cases, this trade-off is not just acceptable, but
necessary.

At the same time, infinite division and abstraction can lead to rigidity. Hierarchies
can themselves become institutionalized into a dogma that resists paradigm shifts.
For example, in the modern aerospace industry, legacy architectures often persist
not because they are optimal, but because they are deeply entrenched and expensive
to replace. Thus, while layered architectures are powerful, they must be approached
with these limitations in mind.

1.4 Legged Robots as A Case Study for Layered Architectures
Legged robots provide a compelling case study to explore the benefits of layered ar-
chitectures — from fast dynamic instabilities induced by underactuation to decision-
making problems associated with path planning, there are a variety of temporal and
spatial scales that must be resolved to achieve general autonomy. Furthermore, in

6

Figure 1.1: ARCHER, a dynamic 3D hopping robot, leveraging layered control
architectures to navigate outdoor terrain.

the last few years the focus in legged systems has shifted from the synthesis of indi-
vidual behaviors to the pursuit of full-scale autonomy; as such, this is an opportune
time to refine a systems-level perspective in the context of legged robots.

Historically, enabling robots to operate in cluttered environments has been a focal
challenge in control, dating back to the early days of mobile robots [18]. Although it
is theoretically possible to accomplish the planning and control tasks in a single shot
via policy-design [19]–[22], this approach poses significant challenges for legged
robots due to high-dimensional state and action spaces, nonlinear dynamics, and a
lack of safety and feasibility guarantees. As a result, it is more practical for legged
robots to deploy layered control architectures, whereby high-level path planning
algorithms are paired with low-level tracking controllers. Typically, kinematically
feasible (i.e., collision-free) paths are passed down the control stack, and dynamic
feasibility (i.e., satisfaction of the underlying system dynamics) is an assumed
property of the low-level controller. Such planner-tracker paradigms are extremely
common in legged robotic control [10], [23]. With this context established, we next
examine how hierarchical principles manifest across the control stack for legged
robots, beginning with low-level control.

7

Low Level
From the formal perspective, a rich catalog of methods has been developed for
stabilizing nonlinear systems in the presence of unknown disturbances by utilizing
underlying structural properties of the system [24]–[27]. In particular, the tools
of Control Lyapunov Functions (CLFs) [28], [29] and Input-to-State Stability [30]
have enabled the joint synthesis of stabilizing controllers and Lyapunov certificates
of stability in the presence of disturbances, including through convex optimization
[31]–[33]. However, the underactuated dynamics inherent to legged locomotion
impose fundamental limits on controller performance and necessitate a critical
understanding of the system’s flow to achieve complex behaviors. Underactuation
prevents arbitrarily shaping a system’s dynamics, undermining the assumptions
of many control-theoretic methods such as feedback linearization [34] and offline
trajectory tracking.

For dynamic and underactuated legged systems, low-level feedback has had a long
history. Early works on stabilizing legged robots focused on static stability like
Zero-Moment Point (ZMP) [35], which ensures that the weight of the robot is
always balanced over the feet. Although this is a straightforward way of ensuring
that a robot will not fall over, it severely limits the range of dynamic behaviors that
a robot can achieve.

The shift from quasi-static motion to dynamic motion was pioneered in the 1980s
by the MIT Leg Lab [36]. This sparked a substantial body of work on reduced-order
models — such as the linear inverted pendulum (LIP) [37], spring loaded inverted
pendulum (SLIP) [38], and centroidal models, which remain widely used due to their
analytical simplicity and physical interpretability. Beyond being tools for real-time
control, these models also serve as components within layered control architectures
[39].

In search of formal guarantees for these systems, [40] proposed a feedback strategy
whereby an offline trajectory was paired with an exponentially stabilizing output
controller to achieve provable stability on a planar biped. An algorithmic approach
to finding this offline trajectory was explored in [41], and [42]–[44] incorporated a
library of behaviors to get more expressive performance. These libraries of gaits
were interpolated to produce a feedback controller in [45].

Planning-based control such as model predictive control (MPC) [46]–[48] has be-
come a mainstream method for controlling legged systems [49]. MPC is particularly
well suited for legged systems due to its ability to handle nonlinear dynamics, un-

8

deractuation, and state/input constraints. Although MPC has been successfully
demonstrated in several challenging control settings [50]–[60], its application to
legged robots faces significant challenges due to the high dimensionality and stiff-
ness of the hybrid dynamics.

The difficulty in realizing MPC-based controllers at a fast enough rate to allow for
real-time implementation is often resolved by using an approximate model of the
system dynamics that is amenable to efficient planning, typically through lineariza-
tion and temporal discretization of the continuous-time nonlinear system dynamics
[48], [58]–[61]. Many MPC implementations rely on reduced-order models to re-
tain computational tractability; see [62] for an overview. Using a full model instead
was explored in [63] for a planar biped, and [64] for a 3D hopping robot. Boston
Dynamics has long relied on predictive methods for stabilizing its high degree of
freedom humanoids, and has recently moved from using reduced order models to
full order models at the planning level [65]. To address the high computational cost
of full-model optimization problems, some methods leverage a gradation of model
fidelities along a time horizon [66], [67]. Other methods rely on offline trajectory
optimization to generate desirable behaviors, and then track these behaviors online
[40].

Reinforcement learning (RL) [68] takes the concept of offline computation even
further, using concepts from stochastic optimal control and parallelized simulation
environments to synthesize feedback controllers. RL methods have shown robust
performance [69], [70] when the policy is trained in sufficiently randomized do-
mains. Current methods in RL improve policies through simulator rollouts [71],
typically at the expense of high data complexity. Although these can work well, they
exhibit extreme sensitivity to cost function parameters and ignore the underlying
system structure.

High Level
While low-level control ensures robustness and stabilization, high-level planning
plays a crucial role in producing dynamically feasible trajectories to provide progress
to a goal. Planners can ensure feasibility by adjusting the trajectories they generate
based on a tracking certificate, i.e., a representation of what the tracking controller
can reasonably accomplish. This bidirectional paradigm has theoretical roots in
hierarchically consistent control [72], approximate simulation relations [73], and
bisimulation [74]. This concept of levels communicating through achievable perfor-

9

mance metrics serves as the foundation for robust motion planning [75]. For linear
systems, such tracking certificates can be synthesized directly [76]. For nonlinear
systems like legged robots, generating tracking certificates is a more challenging
task, and remains an active area of research. One option leverages Hamilton Jacobi
reachability analysis to produce tracking upper bounds [77]. Depending on the
existing system structure, notions of Input to State Stability [78] can also be used to
constructively produce tracking certificates for nonlinear control systems [79]. Al-
ternatively, the linearization of the nonlinear system can be used to get approximate
polytopic reachable sets [80].

In practice, approximate methods for planning are used for their convenience and
computational tractability. The use of such approximations creates a gap between
the system which is being planned for and the actual evolution of the nonlinear sys-
tem, requiring an additional measure of robustness to ensure constraint satisfaction.
This robustness is often achieved by tightening the constraint sets by the maximum
deviation between the approximate model and the continuous time nonlinear sys-
tem dynamics [77], [81]–[87]. Approximating worse-case deviations is typically
done using properties of the dynamics which may be difficult to compute, such
as Lipschitz constants for which over-approximations yield conservativeness, or by
solving computationally intensive optimization programs. More recently, hierarchi-
cal control frameworks have been proposed that plan with an approximate model,
but directly address nonlinear dynamics with a low-level controller [88], [89].

Finally, to extend the notion of guaranteed feasibility to a decision making level, we
require a certificate for the combined planner-tracker model, i.e., a representation of
which states can be reached while satisfying state and input constraints. For discrete
systems, this is often done by planning sequences of discrete actions based on motion
primitives [90], [91]. Extending this to arbitrary continuous behaviors often requires
solving two point boundary value problems [92], which can be computationally
expensive.

The literature of high-level planning for legged systems has been comparatively
sparse. This is attributable to the fact that robust and generalizable feedback con-
trollers have only recently been designed for these systems. Constructing a pipeline
which is able to guarantee feasibility necessitates reasoning about both the dynam-
ics and free space information during the planning phase; algorithms which plan
for both kinematic and dynamic feasibility are termed kinodynamic planners [93].
Kinodynamic planners can broadly be placed into two categories: sampling-based

10

and optimization-based methods. Both of these methodologies produce a graph,
either of states or of sets, whereby the problem of path generation is reduced to a
graph search.

In the sampling-based paradigm, one main way of producing kinodynamically feasi-
ble paths is by sampling policies from a discrete collection of predefined primitives
[90], [91]. This method suffers from the fact that the predefined policies induce a
bias and may not make meaningful progress towards the goal. Another approach
is to randomly sample new points and connect them to the nearest node on the
graph if a two-point boundary value problem is feasible [92], which can be viewed
as an extension to the classic RRT [94] method of kinematic path planning. This
method requires solving as many such problems as there are pairs of nodes in the
graph, which can be expensive to compute for high-dimensional nonlinear systems.
Sampling-based methods face two major challenges — path suboptimality due to the
probability of sampling the true optimal path being zero, and bias, either through the
discretized policy design, or Voronoi bias introduced by using a Euclidean metric
[95]. To address suboptimality, various methods have proposed refinements to the
path which increase the optimality [92]. To address the notion of bias, the notion of
reachability has been introduced into sampling-based planners [96]. In particular,
authors have developed reachability-guided RRT variants [17], [97], [98] that avoid
solving boundary value problems during graph construction. For nonlinear systems,
however, this top-down approach provides guarantees of feasibility which are often
approximate and rely on using local linearizations of the nonlinearities; this requires
the system to remain sufficiently close to the nominal trajectory during execution.

In contrast to building a graph of sampled states, optimization-based approaches
instead try to directly generate optimal paths to the goal state. These methods re-
quire the solution of large mixed-integer programs to generate optimal paths to the
goal, either via a keep-out philosophy [99], or a keep-in philosophy via convex de-
composition [100]–[102]. To address the benefits and drawbacks of sampling-based
and optimization techniques, various approaches have been proposed to combine
these methods [103]–[105]. Despite these advancements, the computational burden
associated with these approaches hinders their deployment in obstacle-rich environ-
ments in real time. As a means to mitigate these computational limitations, layered
approaches to control synthesis have proven effective [12]. Before introducing the
control strategies developed to address Problem 3.1, we must formally introduce the
robotic platforms used throughout this work to provide appropriate context.

11

Figure 1.2: Robots discussed in this thesis, from left to right: Vision 60, AMBER,
and ARCHER.

1.5 Legged Robot Introduction
The complexity of legged systems primarily arises from two sources. First, the float-
ing base of the system is unactuated, requiring careful coordination of the systems
actuated coordinates and natural dynamics for stabilization. Second, legged robots
repeatedly make and break contact with the environment, introducing discrete tran-
sitions that must be handled explicitly as they play a central role in system stability.
As such, this thesis leverages three robots that span various floating base representa-
tions as well as varying number of legs (and therefore distinct combinatorial contact
combinations).

Vision 60
The first platforms is the Vision 60 v3.9 quadruped, manufactured by Ghost Robotics.
This robot has 12 actuated joint degrees of freedom (three per leg), and 6 unactuated
base frame degrees of freedom, resulting in a 36 dimensional state space. This robot
weighs 44 kg, is 54 cm wide and stands roughly 50-60 cm tall. It is equipped with an
Nvidia Jetson AGX Xavier for onboard compute, whose control loop runs at 1 kHz.

Quadrupeds like the Vision 60, although facing the challenge of having a large num-
ber degrees of freedom, benefit from having a large support polygon — the size of the
convex hull of their stance feet. This leads to an inherent stability with quadrupeds
that enables the use of relatively simple control methods to stabilize them.

12

AMBER
The second platform is AMBER-3M, a planar bipedal robot with modular legs and
point feet [106]. AMBER has 4 actuated joints and 3 unactuated base degrees of
freedom, giving it a 12 dimensional state. Actuation is provided through harmonic
drives with 90-1 gear ratios attached to 4 bar linkages to drive the hips and knees.
Between the viscous damping in the gearboxes and the backlash in the linkages, the
model of AMBER is quite poor. AMBER stands 137 cm tall and weighs 22 kg. The
system is controlled by an off-board i7-6700HQ CPU @ 2.6GHz with 16GB RAM.
Desired torques are computed at 1kHz (unless otherwise noted) and communicated
with the ELMO Gold Whistle motor drivers at 2kHz via EtherCat using the SOEM
open source library.

Despite its lower dimensionality, AMBER is considerably harder to stabilize than
Vision 60. The use of point feet results in an infinitesimal support polygon, which
requires stabilization strategies that leverage the system’s underlying dynamics. In
some experiments, the legs were replaced with spring point feet, which introduced
two additional unactuated degrees of freedom and made the robot model even worse.

ARCHER
The final platform is ARCHER, a 3D hopping robot [107]. ARCHER has 4 actuated
degrees of freedom — three reaction wheels and one leg actuator — and 6 unactuated
base degrees of freedom, leading to a 20-dimensional state. ARCHER has a carbon
fiber frame with a structural aluminum spine. Three KV115 T-Motors with 250 g
flywheel masses are attached for orientation control, and one U10-plus T-Motor is
attached to a 3-1 planetary gearbox which connects to the foot via a cable and pulley
system. The foot spring has a spring constant of 11,700 N/m, selected to be as
small as possible while not bottoming out during hopping, which the authors note
empirically maximizes hop height. The robot actuators are powered by two 6 cell
LiPo batteries connected in series, which supply 50.8 V at up to 100 A of current to
the four ELMO Gold Solo Twitter motor controllers. Two compute configurations
were used: an external AMD 5950x CPU with an Nvidia 4090 GPU (for indoor
trials), and a 16 GB RAM Nvidia Orin powered by two separate 6 cell LiPo batteries
connected in parallel (for outdoor trials). The computers were connected over
Ethernet to two Arduino Teensys which communicate with the motor controllers.
Two estimation stacks were also used: optitrack for state estimates and an overhead
ZED camera for color images (for indoors trials) and two on-board cameras, an
Intel Realsense T265 for state estimates, and an Intel Realsense D435 for depth

13

Figure 1.3: ARCHER, the 3D hopping robot used in this work with power, actuators,
compute, and sensors annotated.

and color images (for outdoor trials). For outdoor trials, the robot was wrapped in
pool noodles, the foot protected by a tennis ball, and the compute stack housed in a
protective 3D printed shell. Fully equipped, ARCHER weighs 8.25 kg and stands
60 cm tall.

ARCHER is highly underactuated — as it flies through the air its center of mass
states follow ballistic trajectories with no direct control over its translational motion.
On the other hand, the orientation of this robot is directly controllable. Therefore,
the question of interest becomes: how can we leverage the angle through impact to
stabilize the full system state? These features make ARCHER the perfect platform
to study hybrid underactuated control.

Chapter 2: A Gentle Mathematical Introduction

Contents
2.1 Nonlinear Dynamics . 15

2.2 Nonlinear Control . 32

2.3 Robotic Systems . 39

2.4 Underactuated Systems . 42

2.5 Optimization . 49

2.6 Bézier Curves . 57

Dynamics asks the question: what will happen?
Control asks the question: how do we make it happen?

15

Mathematics plays a pivotal role within the field of engineering, providing a lan-
guage through which we can model and describe the world around us. This section
is devoted to developing the relevant mathematical preliminaries required to under-
stand robot autonomy. Along the way, there will be a number of modeling choices,
which we will make explicit as they arise.

We begin by choosing a state to describe our system. This already presents a
modeling choice, as the state must encode all relevant features of the system’s
behavior. In general, any physical system contains infinite complexity — a single
blade of grass, for instance, contains billions of atoms, all of which could, in theory,
be modeled. Limits on computation, numerical resolution, and patience, however,
force us to characterize only the predominant features.

2.1 Nonlinear Dynamics
For the time being, we model a state as a vector x ∈ Rn, an element of an
n−dimensional real vector space. A powerful method of describing how systems
evolve over time is through the lens of differential equations, which specify that the
rate of change of the state is a function of the current state. To make this precise,
consider the following ordinary differential equation (ODE):

dx
dt

= f(x) (2.1)

where f : Rn → Rn is a function that describes this relationship. The function f
describes a vector field on the state space — it maps states x to vectors that lie tangent
to the evolution of the system over time. To avoid any mathematical pathologies,
we assume that the function f is continuously differentiable, i.e., that its Jacobian
df
dx exists and is continuous, unless otherwise stated.

The choice of model in (2.1) already carries certain assumptions. First, we have
taken the dynamics to be autonomous — the dynamics have no explicit dependence
on time, meaning that the behavior of the system at any given state is independent
of when it is evaluated. Second, we have assumed that no spatial gradients appear
— the dynamics only contain the state and its time derivative, which helps us avoid
the added complexities of partial differential equations. What we lose in modeling
ability, we gain in system structure — the class of ODEs is extremely descriptive,
but simple enough to reason about. Given the dynamics (2.1), we can write the time
evolution of the system as:

x(t) = φt(x0) ≜ x0 +
∫ t

0
f(x(τ))dτ, (2.2)

16

where x0 ∈ Rn is the initial state and φ : R≥0 × Rn → Rn is the flow. We assume
that this solution is forward complete — it exists and is well defined for all time.

Analysis
One of the central objectives of dynamics and control is to analyze the behavior of
the system flow over time. The first natural question that arises is:

Question: Does the flow of the system φt(x0) converge to any partic-
ular point in space as t→∞?

That is, given an equilibrium point x∗, a point where f(x∗) = 0, we would like to
know whether any of the following properties hold:

Figure 2.1: Various notions of stability.

Definition 2.1. A system is said to be
stable if, for every ε > 0, there exists a
δ > 0 such that:

∥x(0)− x∗∥ ≤ δ =⇒ ∥x(t)− x∗∥ ≤ ε,

for all t ≥ 0.

Definition 2.2. A system is said to be
asymptotically stable if it is stable and
additionally satisfies:

lim
t→∞
∥x(t)− x∗∥ = 0.

Definition 2.3. A system is said to
be exponentially stable there exist con-
stants M, λ > 0 such that:

∥x(t)− x∗∥ ≤Me−λt∥x(0)− x∗∥,

for all t ≥ 0.

One’s first instinct might be to attempt to solve explicitly for x(t) and then study its
behavior as t → ∞. In some cases, this is tractable; for example, if the dynamics

17

are linear, that is ẋ = Ax for some matrix A ∈ Rn×n, then the solution can be
written as:

x(t) = eAtx0 ≜
(

I + At + 1
2!A

2t2 + 1
3!A

3t3 + . . .
)

x0 (2.3)

where eAt is the matrix exponential, defined via the above infinite series. To analyze
the stability of this flow, we can simply look at an eigenvalue decomposition of the
matrix A — if the real part of all eigenvalues lie in the left half plane, then the
solution will be upper bounded by a decaying exponential [108].

Unfortunately, for most nonlinear systems, explicit closed-form solutions are not
available. To make this concrete, we introduce the nonlinear oscillator. This system
has the same dynamics as the pendulum under a different topology. Once we
introduce the notion of manifold we will present the pendulum, which will serve as
a running illustration throughout the background section.

Example: The Nonlinear Oscillator

Consider an oscillator with position θ ∈ R and velocity θ̇ ∈ R. The dynamics
of the system are given by:

d

dt

θ

θ̇

 =
 θ̇

− sin(θ)

 .

Even for this extremely simple nonlinear system, we cannot write down an analytic
expression for the evolution θ(t) over time. Given this immediate hurdle:

Question: If we cannot even produce solution curves for simple sys-
tems, what hope do we have for analyzing the behavior of general
nonlinear systems?

Linearization
The first method for analyzing nonlinear systems is to approximate them up to first
order via linearization, whereby we replace the nonlinear system near an equilibrium
point with a linear system. Specifically, consider the system linearized around x∗

given by:

ẋ = df
dx

(x∗)︸ ︷︷ ︸
≜A

x

18

where A ∈ Rn×n is the Jacobian of f evaluated at x∗. Note that this linearized model
is only valid in a neighborhood of the equilibrium — far away this approximation
significantly degrades, as the nonlinearities can be the dominant forces present.
Given that we now have a linear system, we can leverage the linear system solution
(2.3). Additionally, the Hartman-Grobman Theorem [109] guarantees that if the
linearized system is exponential stability, then there exists a neighborhood around
the origin where the nonlinear system is also exponentially stable. However, the
domain of validity of the analysis is limited to the (potentially infinitesimal) region
where the linear dynamics dominate the nonlinearities.

Question: Is there any hope for a broader theory that extends beyond
linearizations?

Lyapunov Theory
To move beyond the limitations of linearization, we turn to a broader and more
powerful framework: Lyapunov theory. Rather than reasoning directly about system
trajectories, Lyapunov theory studies systems indirectly, through the projection of
a systems’ dynamics onto a scalar-valued function. The main idea is powerfully
simple: if we can find a function that always decreases along trajectories of a
dynamical system, we can infer properties about the system’s evolution without
solving for x(t) explicitly. With this intuition in mind, we state Lyapunov’s theorem,
adapted from its original 1892 version to match our nomenclature:

Theorem 2.4 (Lyapunov). Consider the equilibrium point x∗ = 0 and let V : Rn →
R≥0 be a continuously differentiable, positive definite function. If we have that:

V̇ (x) ≤ 0,

then the equilibrium x∗ = 0 is stable. If moreover we have that:

V̇ (x) ≺ 0,

then the equilibrium x∗ = 0 is asymptotically stable.

To build intuition, consider the visual interpretation of Lyapunov’s Theorem in
Figure 2.2. The left plot shows the system dynamics ẋ = f(x) as a vector field.
The middle plot shows another vector field, this time defined by the gradient of the
candidate Lyapunov function V . The right plot illustrates that V̇ = dV

dx f(x) can be
thought of as the inner product of these two vector fields, measuring how much they

19

Figure 2.2: Lyapunov Theory.

align. If the angle between ∇V and f is “obtuse” at all points, then V̇ ≺ 0. This
means that the flow of the system is guaranteed to descend level sets of the function
V , implying that the solutions are bounded and therefore stable.

Remark: The power of Lyapunov’s method lies in its pointwise nature: the
condition can be verified independently at each point in the state space. Therefore,
conclusions of the system’s behavior can be made without ever needing to reason
about the solution curves of the system.

Note that Lyapunov’s theorem was not only applicable to linear systems — any
system that satisfies the Lyapunov condition is certifiably stable. The classic formu-
lation of Lyapunov’s theorem is powerful, but it is useful to restate it in a way that
is more conducive to later analysis. Before proceeding, we require a few function
classes to be defined:

Definition 2.5 (Class-K). A continuous function α : [0, a) → R≥0, with a > 0, is
said to belong to classK denoted α ∈ K if α(0) = 0 and α is strictly monotonically
increasing. If a =∞ and limr→∞ α(r) =∞, then α is class K∞ (α ∈ K∞).

Using these constructions, we can restate Lyapunov’s theorem as:

20

Theorem 2.6 (Modern Lyapunov [26]). Consider the equilibrium point x∗ ∈ Rn

and the continuously differentiable function V : Rn → R+. If V satisfies:

α1(∥x∥) ≤ V (x) ≤ α2(∥x∥)

V̇ (x) = dV

dx
(x)f(x) ≤ −α3(∥x∥)

for αi ∈ K, then the system is asymptotically stable. If αi is of the form ∥x∥c for
some constant c > 0, then the system is exponentially stable.

Let us return briefly to our linear system ẋ = Ax. Consider a positive definite
symmetric matrix P ∈ Sn and define a candidate Lyapunov function as the positive
definite function V (x) = x⊤Px. Taking the time derivative of V yields:

V̇ (x) = dV

dx
(x)ẋ = 2x⊤A⊤Px = x⊤(A⊤P + PA)x,

where the last rearrangement puts the product in a symmetric form. Therefore, if
we can find a matrix P satisfying the condition:

A⊤P + PA = −Q (2.4)

for some positive definite matrix Q, then V̇ = −x⊤Qx. As this is a negative
definite function, the requirements of Lyapunov’s theorem are satisfied and therefore
the function V certifies that the equilibrium point x∗ is exponentially stable. The
condition (2.4) has the fitting name of the continuous time Lyapunov equation
(CLTE). When A is Hurwitz (all of its eigenvalues have strictly negative real parts),
a unique positive definite matrix P exists for every positive definite choice of Q.

We also state a powerful converse result:

Theorem 2.7 (Converse Lyapunov Theorem [29]). If a system is exponentially
stable, then there exists a function V : Rn → R≥0 satisfying:

k1∥x∥2 ≤ V (x) ≤ k2∥x∥2

V̇ (x) = dV

dx
(x)f(x) ≤ −k3∥x∥2

for ki > 0.

Thus, Lyapunov functions serve as certificates of performance — if the conditions
in Lyapunov’s theorem are satisfied, then the function V certifies that the system
has a particular stability type. Certificates of performance such as these will play a
central role in the theory of layered architectures.

21

Input to State Stability
Given the constructions in the previous section, a natural question arises:

Question: If disturbances are present, what can we say about the
stability of the system?

To address this question, consider the dynamics with disturbances added as:

ẋ = f(x) + d(t)

for d : R≥0 → Rn a time varying disturbance. Let ∥d∥∞ ≜ supt≥0 ∥d(t)∥2 of a
time varying signal denote the supremum of its two norm over all time. Then, we
have the following definition:

Definition 2.8. The system ẋ = f(x) + d with f : Rn × Rm → Rn is said to
be Exponentially Input to State Stable (E-ISS) with respect to the equilibrium pair
(x∗, d∗) = (0, 0) if there exist constants M, λ > 0, a ∈ R>0 ∪ {+∞}, and a
function γ ∈ K such that:

∥x(0)∥ ≤ a =⇒ ∥x(t)∥ ≤Me−λt∥x(0)∥+ γ(∥d∥∞).

The notion of input to state stability (ISS) generalizes to broader stability types, but
in this thesis, we will only focus on the exponential case.

Just as Lyapunov theory provided a certificate of stability for the system without
disturbances, it can also provide a certificate for input to state stability:

Definition 2.9. Consider the system ẋ = f(x, d) where f : Rn × Rm → Rn. A
continuously differentiable function V : X → R≥0 is an E-ISS Lyapunov function
with respect to the equilibrium pair (x∗, d∗) = (0, 0) if:

k1∥x∥c ≤ V (x) ≤ k2∥x∥c

∥x∥ ≥ ρ(∥d∥∞) =⇒ V̇ (x, d) ≤ −k3∥x∥c,

for ki, c > 0 and ρ ∈ K.

If an E-ISS Lyapunov function exists, then the system ẋ = f(x, d) is E-ISS. We can
alternatively write the E-ISS condition as:

V̇ (x, d) ≤ −k3∥x∥c + σ(∥d∥∞),

for σ ∈ K, which will be convenient for later analysis.

22

Safety
Besides stability, another key property we may wish our dynamical systems to
exhibit is safety. In the context of this thesis, we will take safety to mean that the
system remains within a predefined safe set at all times. Consider a set C ⊂ Rn

defined as the 0-superlevel set of a continuously differentiable function h : Rn → R,
yielding:

C ≜ {x ∈ Rn : h(x) ≥ 0} . (2.5)

We denote the boundary of C as ∂C ≜ {x ∈ Rn : h(x) = 0} and its interior as
Int(C) ≜ {x ∈ Rn : h(x) > 0}. We assume that C is nonempty and has no isolated
points, that is, Int(C) ̸= ∅ and Int(C) = C. We will refer to C as the safe set. This
construction motivates the following definitions of forward invariance and safety:

Definition 2.10 (Forward Invariance & Safety). A set C ⊂ Rn is forward invariant
if for every x0 ∈ C, the solution x(t) to (2.1) satisfies x(t) ∈ C for all t > 0. The
system (2.1) is safe on the set C if the set C is forward invariant.

Once again, we would like to provide a certificate — this time, that a system is safe
— without reasoning about the solution curves of that system. As with stability
theory, there is a seminal result from the 1940’s from Nagumo that relates safety to
a derivative condition:

Theorem 2.11 ([110]). Let C ⊂ Rn be the 0-superlevel set of a continuously
differentiable function h : Rn → R. We have that:

S is forward invariant ⇐⇒ ḣ ≥ 0 for all x ∈ ∂C.

Nagumo’s theorem provides another powerfully simple condition: to certify that a
set is forward invariant, it suffices to verify that on its boundary, the dynamics are
flowing into the set.

In many settings, particularly involving controller synthesis, it is advantageous to
formulate conditions that hold over the entire state space. To achieve this, we
introduce a family of functions similar to those used in the stability analysis:

Definition 2.12 (Extended Class-K). A continuous function α : (−b, a) → R,
with a, b > 0, is said to belong to extended class K (α ∈ Ke) if α(0) = 0 and
α is strictly monotonically increasing. If a, b = ∞, limr→∞ α(r) = ∞, and
limr→−∞ α(r) = −∞, then α is said to belong to extended class K∞ (α ∈ K∞,e).

23

Figure 2.3: Continuous and discrete barrier function conditions.

With this, we are now equipped to introduce the notion of barrier functions:

Definition 2.13 (Barrier Function [111]). Let C ⊂ Rn be the 0-superlevel set of
a continuously differentiable function h : Rn → R. The function h is a barrier
function for (2.1) on C if there exists α ∈ K∞,e such that for all x ∈ Rn:

ḣ(x) = dh

dx
f(x) ≥ −α(h(x)), (2.6)

We now have the tools required to introduce a certificate of safety:

Theorem 2.14 ([112]). Given a set C ⊂ Rn defined as the 0-superlevel set of a
continuously differentiable function h : Rn → R, if h is a barrier function for (2.1)
on C, then the system (2.1) is safe with respect to the set C.

Thus, barrier functions provide certificates of safety, offering yet another means by
which levels in layered architectures can communicate.

Discrete-Time Systems
Thus far, we have considered systems that evolve continuously over time. Next,
we extend our discussion to systems the experience discrete state updates, and
develop analogous notions of stability and safety. In discrete time, conditions on
the differential of the state are replaced by conditions on the increment of the state
across time steps. To formalize this, let xk ∈ Rn denote the state of the system at
the index k ∈ Z+. The system dynamics are given by the update equation:

xk+1 = F(xk) (2.7)

24

where F : Rn → Rn is a continuously differentiable function.

Similar to the continuous-time case, we can define a notion of exponential stability:

Definition 2.15 (Discrete Exponential Stability). The discrete system (2.7) is expo-
nentially stable to an equilibrium point x∗ ∈ Rn if there exists constants M > 0
and β ∈ [0, 1) such that:

∥xk − x∗∥ ≤Mβk∥x0 − x∗∥.

for the initial condition x0.

Other stability types also exist for discrete systems, but in this thesis we will only
consider the exponential case.

The stability of discrete-time systems can be certified through a discrete analog of
Lyapunov theory:

Definition 2.16. A positive definite function V : E → R is called a discrete
exponential Lyapunov function if there exists constants α ∈ (0, 1], k1, k2 > 0 such
that:

k1∥xk∥2 ≤ V (xk) ≤ k2∥xk∥2

∆V (x) = V (xk+1)− V (xk) ≤ −αV (xk).

Remark: Because discrete-time systems directly map between states without evolv-
ing along continuous trajectories, the analysis and design of controllers becomes
substantially more challenging. As a consequence, reasoning about constraints and
guaranteeing properties such as stability or safety can often be more challenging in
discrete time than continuous time.

Similarly, we can introduce a notion of safety to discrete-time systems by introducing
discrete-time barrier functions:

Definition 2.17 (Discrete Time Barrier Functions). Let C ⊂ Rn be the 0-superlevel
set of a continuously differentiable function h : Rn → R. The function h is a
discrete time barrier function for (2.7) on C if there exists α ∈ K∞,e such that for
all xk ∈ Rn:

∆h(xk, xk+1) = h(xk+1)− h(xk) ≥ −α(h(xk))

for an extended class K∞ function α satisfying α(r) < r.

25

Theorem 2.18. Given a set C ⊂ Rn defined as the 0-superlevel set of a continuously
differentiable function h : Rn → R, if h is a barrier function for (2.7) on C, then the
system is safe with respect to the set C.

As demonstrated in this section, we now have a complete language for describing
stability and safety certificates for both continuous and discrete dynamical systems.

Manifolds
Thus far, we have treated the system state x as an element of the vector space Rn,
relying on the fact thatRn is a Euclidean space where the tangent space at any point is
canonically identified with the space itself. As we move towards more sophisticated
modeling — especially of rotations and orientations — we must generalize this
perspective: the state may instead live on a manifold, whereby the dynamics must
be understood in terms of the manifold’s tangent spaces.

Consider a differentiable function h : Rn → Rp with 0 a regular value — that is,
h(x) = 0 implies that the Jacobian ∂h

∂x is full rank. Under these conditions, we have
thatM ≜ {x | h(x) = 0} defines a n − p-dimensional embedded submanifold of
Rn [113]. Associated with each point x ∈M is the tangent space TxM, consisting
of all vectors that lie tangent to the manifold at that point. A vector v ∈ Rn is a
tangent vector at x, denoted as v ∈ TxM, if and only if:

∂h
∂x

⊤
v = 0.

This aligns with the classical notions of tangent vectors, as the gradient field of the
function h forms a basis for the annihilators of the tangent space.

Dynamics on Manifolds
For a system whose state x evolves on a differentiable manifold X , the dynamics
take the form:

ẋ = f(x)

where f : X → TxX . Given an initial point x0 ∈ X , the flow of the system
generates a curve φ : X × R≥0 → X satisfying:

d

dt
φt(x0) = f(φt(x0)),

φ0(x0) = x0.

26

Associated with the flow is the pushforward operation, which transports tangent
vectors along the flow. The pushforward (φt)∗ : Tx0X → Tφt(x0)X describes how
perturbation vectors at time zero evolve under the dynamics to perturbation vectors
at time t, and will be useful when comparing the dynamics equations at different
points along the flow, as is often done during analysis.

Given a manifold M and dynamics f , a key property in our analysis will be the
notion of controlled invariance:

Definition 2.19. A manifoldM is controlled invariant under the dynamics f if for
all x ∈M we have that:

f(x) ∈ TxM.

That is, the vector field associated with the dynamics lies in the tangent space of
the manifold. This condition ensures that the flow of the system remains on the
manifoldM.

Lie Groups

Lie groups play a central role in modeling the configuration spaces of robotic
systems, particularly in describing rotational motion. Before introducing these, we
briefly recall the notion of a group:

Definition 2.20. A group is a nonempty set G equipped with a binary operation
· : G×G→ G satisfying:

• For all g1, g2, g3 ∈ G, we have that (g1 · g2) · g3 = g1 · (g2 · g3)

• There exists an element e in G such that for every g ∈ G, we have e · g = g

and g · e = g

• For each g1 ∈ G, there exists an inverse element g−1
1 ∈ G such that g1◦g−1

1 = e

and g−1
1 ◦ g1 = e.

A Lie group is a group that is also a smooth manifold, such that both multiplication
and inversion are smooth maps. As with general smooth manifolds, we can also
consider the tangent space at each point in a Lie Group. Of particular importance is
the tangent space at the identity element, denoted TeG, called the Lie algebra and
often written as g. The Lie algebra provides a canonical vector space associated with
the Lie group, enabling a convenient location to perform linear analysis. Moreover,

27

the exponential map exp : g→ G and its inverse, the logarithmic map log : G→ g

provide a local diffeomorphism between a neighborhood of the identity in G and
elements of the Lie algebra g, allowing local behavior on the group to be studied
entirely within a linear vector space.

Example: Construction of SO(n)

One of the most important Lie Groups for robotics is the special orthogonal
group SO(3), which represent 3D rotations. To construct SO(n), consider the
general linear group:

GL(n) = {A ∈ Rn×n | det(A) ̸= 0},

which is the set of invertible n × n matrices. Next define the smooth map
f : GL(n)→ Rn×n by:

f(A) = A⊤A.

The orthogonal group O(n) is the pre-image of the identity element In under
the mapping f :

O(n) = {A ∈ Rn×n |A ∈ GL(n), A⊤A = In}.

Finally, by restricting to matrices of determinant 1, we obtain the special
orthogonal group:

SO(n) = {A ∈ Rn×n |A ∈ GL(n), A⊤A = In, det(A) = 1}.

From the inverse function theorem, we know that the pre-image of any regular
value of f defines a submanifold of the space. As f and the determinant
operation are both smooth in the space of matrices, we know that SO(n) is a
smooth submanifold of GL(n).

With the goal of doing calculus on manifolds, we must be especially careful
to understand what space the tangent vectors live in. Specifically, we will
consider perturbations of tangent vectors, but in doing so we have to ensure
that the constructions that we make have a mathematical consistency, i.e.,
perturbations of our vectors do not exit the domain of definition of the objects
we create. As such, we will consider perturbations “vectors” to matrices in
SO(n) as elements of the embedded space GL(n).

28

Next, consider the tangent space to SO(n) at the “point” A. Differentiating
the constraint A⊤A = In in the direction of a variation (or tangent “vector”)
V gives:

[Df(A)](V) = lim
ε→0

(A + εV)⊤(A + εV)−A⊤A
ε

.

By considering this expansion up to first order, the tangent vector V at A must
satisfy:

A⊤V + V⊤A = 0n×n

as these are the directions in the null space of the differential of f .

If we want to associate a Lie Algebra to the Lie Group SO(n), then we need to
consider the tangent space at identity. At this point, this condition reduces to:

[Df(In)](V) = 0 ⇐⇒ V + V⊤ = 0n×n,

i.e., V must be a skew symmetric matrices. The space of skew-symmetric
matrices forms a vector space. Equipped with the binary operation of the
standard Lie bracket (the matrix commutator) and noting that skew symmetric
matrices are closed under this operator (as skew symmetric matrices commute),
this defined the Lie algebra so(n).

Example: Quaternions

Another useful manifold to consider is the three sphere, defined as S3 ≜ {x ∈
Rn | ∥x∥ = ⟨x, x⟩ = 1}. To imbue this set with group structure, we can
parameterize it via unit quaternions, i.e. S3 = {q ∈ H | ∥q∥ = qq∗ = 1} where
q∗ denotes the conjugate of q. Quaternion multiplication gives a smooth group
operation, and conjugation gives a smooth inverse, ensuring that S3 is a Lie
group. To understand the tangent space at a point q ∈ S3, we differentiate the
constraint qq∗ = 1 in the direction of a variation δq ∈ H:

[Df(q)](δq) = lim
ε→0

(q + εδq)(q + εδq)∗ − qq∗

ε
.

29

Expanding and collecting first order terms yields the constraint:

qδ∗
q + δqq

∗ = 0.

Evaluating this at the identity element 1 = (1, 0, 0, 0) simplifies this condition:

δ∗
q + δq = 0,

implying that δq must be a purely imaginary quaternion. Therefore the Lie
algebra s3 is naturally given by the set of purely imaginary quaternions, which
can be naturally associated with vectors in R3.

Lie Group Integrators
When the system state evolves on a Lie group, there are convenient tools we can
leverage to perform integration that respects the group structure. For rigid body
orientations represented by a unit quaternion q ∈ S3, the time derivative of q lies in
the tangent space at that point, i.e., q̇ ∈ TqS

3. Given the angular rate of the body
ω ∈ s3, we can calculate q̇ as:

q̇ = qω, (2.8)

using standard quaternion multiplication. The formulation (2.8) is justified because
the tangent map of left multiplication by a quaternion is itself given by left mul-
tiplication, mapping from the Lie algebra to elements of the tangent space at q.1

Integrating (2.8) results in:

q(t) = q(0) exp(ω(t)) (2.9)

where exp : s3 → S3 is termed the exponential map and maps elements of the Lie
algebra s3 back to the Lie group S3. This map is injective for imaginary quaternions
with magnitude less than π; over this neighborhood, the inverse map is denoted
as log : S3 → s3. Rather than computing the continuous-time flow explicitly, a
discrete approximation is often used — the Lie-Euler step — which updates the
state via:

qk+1 = qk exp(ωkh) (2.10)

1Often, the equation (2.8) is reported as q̇ = 1
2 qω. This is because the isomorphism between

ω ∈ s3 and R3 is given by ϕ(ω) = 1
2ω if the generators of s3 are taken to be the canonical basis

of imaginary 3-vectors, which arises from the fact that the action of quaternions parameterized by a
rotation angle θ on vectors rotates them by an angle of 2θ.

30

for a (small) time step h ∈ R. This is a simple example of a Lie group integrator,
and preserves the unit-norm constraint of the quaternion at every step.

Differential Geometry
As dynamical systems are nothing but vector fields on manifolds, differential geom-
etry provides a natural language to discuss them with. These tools will allow us to
reason about the structure present that govern the system’s behavior. We begin by
defining one of the fundamental operations between vector fields: the Lie bracket.

Definition 2.21 (Lie Bracket). Given two vector fields f , g : X → Rn, the Lie
bracket [f(x), g(x)] =: [f , g](x) is given by:

[f , g](x) ≜ ∂g
∂x

∣∣∣∣∣
x
f(x)− ∂f

∂x

∣∣∣∣∣
x
g(x) ≜ adf g(x)

where ad is termed the adjoint operator.

The Lie bracket captures the interaction between the flows generated by f and g. It
measures the extent to which the vector fields do not commute with one another,
i.e., how much flowing along f then g and then backwards along f then g deviates
from the initial point, as seen in Figure 2.4. By repeated application of the adjoint
operator, we can define higher-order Lie brackets:

ad0
f g = g

ad1
f g = [f , g]

...

adk
f g = [f , adk−1

f g] = [f , [f , . . . , [f︸ ︷︷ ︸
k times

, g]]].

Having introduced operations on vector fields, we move to constructing spaces
spanned by collections of vector fields — namely, distributions.

Definition 2.22 (Distributions [109]). Given a set of smooth vector fields f1, . . . , fm,
the distribution ∆(x) is defined as:

∆ = span{f1, . . . , fm},

where the term span is used over the ring of smooth functions, i.e., elements of ∆
at the point x are of the form:

α1(x)f1(x) + · · ·+αm(x)fm(x)

with αi(x) smooth functions of x.

31

Figure 2.4: Integrability and involutivity of a distribution ∆.

Distributions allow us to reason about available directions of motion at each point
in the state space. A natural next question is:

Question: When does a collection of vector fields form a basis for the
tangent space of a manifold?

That is, given a vector field, when is there an implied invariant manifold? This is
precisely captured by the definition of integrability of a distribution:

Definition 2.23. A distribution ∆ = span{f1(x), . . . , fd(x)} is integrable if there
exist n− d real valued functions ϕ1, . . . ,ϕn−d such that:

span{dϕ1, . . . , dϕn−d} = ∆⊥,

where ∆⊥ is the codistribution of all covectors that annihilate ∆.

Not all distributions are integrable, however. In order to produce a condition on when
a distribution is integrable, we require the notion of involutivity, which ensures that
when vector fields are combined through their natural flows, the resulting direction
remains within the original distribution:

Definition 2.24. A distribution is involutive if for any two vector fields δ1, δ2 ∈
∆(x), their Lie bracket [δ1, δ2](x) ∈∆(x).

There is a connection between integrability and involutivity as shown in Figure 2.4,
as captured by the following classical result:

Theorem 2.25 (Frobenius). A distribution is integrable if and only if it is involutive.

32

We will leverage this result when understanding how the vector field spanned by our
control input affects the system dynamics.

Finally, we introduce the notion of a diffeomorphism, which provides a way to
re-parameterize the state space through a change of coordinates.

Definition 2.26. A differentiable function Φ : X → Rn is a diffeomorphism if it is
bijective and has a differentiable inverse Φ−1.

Proposition 2.27. A function Φ is a (local) diffeomorphism at a point x if the
Jacobian DΦ(x) is full rank.

2.2 Nonlinear Control
The previous section focused on dynamical systems, wherein the vector field defining
the system evolution is fixed. There, the central questions were those of analysis:
given a system, what can we conclude about its behavior over time? In contrast, the
field of control shifts the question to:

Question: Given a control system, how can we shape the vector field
to get the system to do what we want?

This change in perspective is extremely powerful. The focus now becomes one of
synthesis: designing control inputs to steer the system toward objectives such as
stability, safety, or performance.

To begin our discussion, consider a general nonlinear control system of the form:

ẋ = f(x, u)

where x ∈ Rn is the system state (returning to the vector space Rn), u ∈ Rm is the
control input, and f : Rn×Rm → Rn now defines the controlled system dynamics.
The fundamental challenge of control theory is understanding how the input u can
be used to impact the system evolution.

To proceed systematically, we assume additional structure on the systems we con-
sider — namely, we restrict our attention to control affine systems, where the
dynamics can be expressed as:

ẋ = f(x) + g(x)u (2.11)

for continuously differentiable drift vector f : Rn → Rn and actuation matrix
g : Rn → Rn×m.

33

Figure 2.5: The phase portrait of the uncontrolled pendulum.

Example: Controlled Pendulum

Consider the controlled pendulum with angle θ ∈ S1 and angular velocity
θ̇ ∈ s1. The dynamics are given by:

d

dt

θ

θ̇

 =
 θ̇

− sin(θ)

+
0
1

u,

where u ∈ R is the applied torque.

Given that the uncontrolled dynamics of the system are unstable about the upright
position, we would like to see if there exists a feedback controller that can instead
render it stable. Generalizing this goal results in the leading question:

Question: Does there exist a choice of control input u that renders an
equilibrium point stable?

Once again, we turn to a notion of linearization, this time exact linearization via
state feedback — as a first pass at controller design.

34

Feedback Linearization
To begin, consider an output y : Rn → Ro which represents signals that we would
like to drive to zero. In order for us to actually drive these to zero, the input u must
appear in a derivative of y in a meaningful way. Taking the first time derivative of
the output yields:

ẏ(x) = ∂y
∂x

f(x)︸ ︷︷ ︸
≜Lf y(x)

+ ∂y
∂x

g(x)︸ ︷︷ ︸
≜Lgy(x)

u

where Lf y : Rn → Ro and Lgy : Rn → Ro denote the Lie derivatives of the output
y along the vector fields f and g, respectively. If Lgy(x) ≡ 0, the control input
does not appear in the first derivative, and we must differentiate again. Continuing
in this way, we continue differentiating until a higher derivative is nonzero:

y(γ)(x) = Lγ
f y(x) + LgLγ−1

f y(x)u.

Differentiating the output until the input appears is captured in the following notion
of strict relative degree:

Definition 2.28 (Strict Relative Degree [34]). An output y : Rn → Ro for the
system (2.11) is said to have relative degree γ ∈ N at x0 if:

LgLk
f y(x) ≡ 0, 0 ≤ k ≤ γ − 2

and LgLγ−1
f y(x) ̸= 0.

Given an output of relative degree γ ∈ N, we can construct a map Φη : Rn → N ≜

Rγ , defined by:

Φη(x) ≜
[
y(x) ẏ(x) · · · y(γ−1)(x)

]⊤
. (2.12)

We will subsequently take η = Φη(x) ∈ N to represent coordinates of the output
space andηi ∈ Rγ−1 to denote the collection of the ith output and its γ−1 derivatives.

Valid relative degree allows the constructive synthesis of controllers which expo-
nentially stabilize the outputs [34]. To construct such a controller, assume that the
system is square, i.e., the number of inputs m is equal to the number of outputs o,
and consider the input:

kfbl(x, v) =
(
LgLγ−1

f y(x)
)−1

(−Lγ
f y(x) + v)

35

Figure 2.6: The phase portrait of the feedback linearized pendulum.

for kfbl : Rn × Rm → Rm, and an auxiliary input v ∈ Rm. Under this controller,
the ηi dynamics become:

η̇i =
0 I

0 0


︸ ︷︷ ︸

≜Fi

ηi +
0

1


︸︷︷︸
≜Gi

vi,

for Fi ∈ Rγ−1×γ−1 and Gi ∈ Rγ−1. We can then collect the output dynamics to be:

η̇ = Fη + Gv (2.13)

for F ∈ Rγ×γ and G ∈ Rγ constructed by concatenating the Fi and Gi components.
Observe that the dynamics in (2.13) are linear and controllable — in fact, they are
simply integrator dynamics. As such, we can readily design a feedback matrix
K ∈ Rm×γ such that choosing the auxiliary input to be v = Kη yields the stable
closed loop system:

η̇ = (F−GK)︸ ︷︷ ︸
Acl

η. (2.14)

Recall that a linear system is exponentially stable if the eigenvalues are in the left
half plane — therefore, any choice of feedback matrix K which achieves this will
render the nonlinear system exponentially stable.

36

Remark: For robotic systems, outputs defined on the position coordinates typically
have relative degree two. Consequentially, relative degree γ = 2 outputs will be the
primary focus in later developments.

Example: Feedback Linearizing the Pendulum

Consider the output y = θ− π, whose zero value corresponds to the pendulum
being upright. Differentiating this output twice yields:

η =
y

ẏ

 =
 θ̇

− sin θ

+
0
1

 v.

Therefore, the feedback linearizing controller is given by:

u = sin(θ) + v

for some auxiliary input v ∈ R. Taking this input to be v = −kpy − kdẏ for
positive constants kp, kd > 0 ensures that the linear system is Hurwitz, which
guarantees that the closed loop system is stable to the upright equilibrium.

Trajectory Tracking

When the desired output is time-varying, special care must be taken in the controller
design. Consider the error signal:

y(x, t) = ya(x)− yd(t)

for measured outputs ya : X → Rm and smooth desired outputs yd : R≥0 → Rm.
Once again, we can construct output coordinates as η = ηa − ηd where ηd collects
yd and its time derivatives up to γ − 1. The feedback linearizing control input now
takes the form:

kfbl(x, t, v) =
(
LgLγ−1

f ya(x)
)−1

(−Lγ
f ya(x) + y(γ)

d (t) + v).

Setting v = −K(ηa−ηd(t)) for an appropriately designed matrix K yields stability
of the time varying output coordinates., ensuring that ya(x)→ yd(t) as t→∞.

Control Lyapunov Functions
Now that we have produced an example of a stabilizing controller for a collection of
outputs of the nonlinear system (2.11), we again seek a certificate of this stability.
To this end, we turn to Control Lyapunov Functions:

37

Definition 2.29. [114] For the system (2.11), V : Rn → R is an exponentially
stabilizing control Lyapunov function (ES-CLF) if there exists a k1, k2, k3 > 0, such
that:

k1∥x∥2 ≤ V (x) ≤ k2∥x∥2

inf
u

V̇ (x, u) ≤ −k3V (x). (2.15)

Remark: Control Lyapunov functions exist for other stability types as well (e.g.,
asymptotic), but in this thesis we will restrict our attention to exponential control
Lyapunov functions.

Given a candidate Lyapunov function (i.e., a positive definite function), verifying
that it satisfies (2.15) is in general highly nontrivial — it requires checking a linear
inequality everywhere in the state space. Instead, we often work backwards by first
using feedback linearization as a proof of existence of a stabilizing controller, and
second using converse Lyapunov theory to generate a control Lyapunov function for
analysis. To demonstrate this workflow, recall the closed loop system η̇ = Aclη from
(2.14) achieved by applying the feedback linearizing control input. As this linear
system is exponentially stable, we know from (2.4) that for any positive definite
matrix Q ≻ 0, there exists a unique positive definite matrix P ≻ 0 satisfying the
(CTLE). Thus, the function V (η) = ηPη is a Lyapunov function satisfying:

λmin(P)∥η∥2 ≤ V (η) ≤ λmax(P)∥η∥2

V̇ (η, v) = LFV (η) + LGV (η)v ≤ −λmin(Q)
λmax(P)V (η)

and thus serves as a Control Lyapunov Function on the output coordinates. As
exponential stability is preserved through diffeomorphism [26], if Φη represents a
diffeomorphism between the entire state space and the output coordinates, then the
function V (Φη(x)) is a Control Lyapunov function for the state x.

If this map does not represent a diffeomorphism, i.e., there are remaining states, a
natural question arises:

Question: If the outputs are stabilized, what happens to the remaining
system states?

The necessary tools to address this question are presented in Section 2.4, and
constructively answering this question will serve as the inspiration for many of the
later sections in this thesis. Before doing so, we first review some additional topics
from classical nonlinear control theory.

38

Input to State Stable Control Lyapunov Functions
Very similar to the notion of an ISS Lyapunov function is the definition of an
EISS-CLF:

Definition 2.30. For the nonlinear control system ẋ = f(x)+g(x)u, a continuously
differentiable function V : Rn → R≥0 is an Exponential Input to State Stabilizing
Control Lyapunov Function (EISS-CLF) if it satisfies:

k1∥x∥c ≤ V (x) ≤ k2∥x∥c

inf
u∈Rm

[Lf V (x) + LgV (x)u] + d ≤ −k3∥x∥c + σ(∥d∥∞)

for ki, c > 0 and σ ∈ K∞.

We now present a lemma that will be critical for later constructions:

Lemma 2.31. Consider the nominal system ẋ = f(x) + g(x)u. If the equilibrium
x∗ = 0 is exponentially stable under the controller u = k(x), then there exists
an EISS-CLF V satisfying the conditions in Definition 2.30 which certifies that the
perturbed system ẋ = f(x) + g(x)k(x) + d is E-ISS. In particular, we have that:

∥x∥ ≥ 2k4

k3
∥d∥∞ =⇒ V̇ (x, k(x), d) ≤ −k3

2 ∥x∥
2.

This states that if we can design a controller that is exponentially stabilizing for a
nonlinear system, we automatically obtain a certificate of exponential input-to-state
stability for the perturbed system.

Control Barrier Functions
Paralleling the construction of barrier functions introduced in Section 2.1, we now
extend the notion of safety to controlled systems via Control Barrier Functions:

Definition 2.32 (Control Barrier Function). Let C ⊂ Rn be the 0-superlevel set
of a continuously differentiable function h : Rn → R. The function h is said to
be a control barrier function (CBF) for the control system (2.11) if there exists an
extended class K∞ function, α ∈ Ke

∞ such that the following inequality holds for
all x ∈ Rn:

sup
u∈Rm

ḣ(x, u) = sup
u∈Rm

[Lf h(x) + Lgh(x)u] ≥ −α(h(x)). (2.16)

39

A control barrier function ensures that at every point in the state space, there exists
a control input u capable of maintaining the forward invariance of the safe set C.

Remark: Verifying the CBF condition (2.16) over the state space is, in general,
highly nontrivial and as such the construction of valid Control Barrier Functions
remains an open and challenging problem. There exists a growing body of literature
devoted to the synthesis and application of CBFs — we refer the reader to [111],
[115] for a deeper exploration of these topics.

Projection to State Safety
Just as Input-to-State Stability provides a framework for analyzing the stability of
a dynamical system under disturbances, we now seek an analogous framework for
safety. In the presence of disturbances, it is unlikely that the original set C is forward
invariant. Instead, we aim to characterize an enlarged set Cδ ⊃ C that accounts for
the disturbance and can be rendered forward invariant:

Definition 2.33 (Projection to State Safety (PSSf) ([116])). Given a feedback con-
troller k, the closed-loop system ẋ = fcl(x) = f(x)+g(x)k(x)+d(t) is projection
to state safe (PSSf) on C with respect to the function h and projected disturbances
δ : R≥0 → R if there exists δ > 0 and γ ∈ K∞ such that the set Cδ ⊃ C,

Cδ ≜ {x ∈ Rn : h(x) + γ(∥δ∥∞) ≥ 0} , (2.17)

is forward invariant for all δ satisfying ∥δ∥∞ ≤ δ.

This concept allows us to quantify the degradation of the safe set under uncertain
dynamics and environments, and will be used during our later analysis.

2.3 Robotic Systems
Having introduced a general theory of dynamics and control, we now focus our
attention on robotic system models, with particular emphasis on legged robots.

Continuous Dynamics
Let q ∈ Q denote the configuration coordinates and x = (q, q̇) ∈ X ≜ TQ
denote the state of an n−degree of freedom robotic system. Various constraints
on the system evolution will become active as the robot enters different modes of
operation. These constraints are often modeled as holonomic constraints, which
are integrable constraints depending only on the configuration. In order to model
this, let h : Q → Rh represent the active holonomic constraints, for example the

40

condition that the height of the stance foot of a walking robot is zero. Enforcing
h(q) = 0 constrains the evolution of the system, which is seen by differentiating
twice:

0 = Jh(q)q̇

0 = J̇h(q, q̇)q̇ + Jh(q)q̈,

where Jh = ∂h/∂q is the Jacobian of the holonomic constraint. Combining these
with the unconstrained Euler-Lagrange equations of motion yields the following
constrained dynamics:D(q) J⊤

h (q)
Jh(q) 0

q̈
λ

 =
−C(q, q̇)q̇ −G(q) + Bu

−J̇h(q, q̇)q̇


where D : Q → Rn×n is the positive-definite mass-inertia matrix, C : X → Rn×n

contains the Coriolis forces, G : Q → Rn the gravity terms, B ∈ Rn×m is the
selection matrix, u ∈ Rm is the control input, and λ are the reaction forces imposed
by the holonomic constraints, which can be thought of as Lagrange multipliers as
presented in Section 2.5.

Solving for λ yields:

λ = −(JhD−1Jh)−1
(
J̇hq̇ + JhD−1(Bu−Cq̇ −G)

)
where the arguments have been suppressed for readability. This results in the closed-
form constrained dynamics, which can be written in the canonical control-affine
form:

ẋ =
 q̇
−D(q)−1H(q, q̇)


︸ ︷︷ ︸

f(x)

+
 0
D(q)−1B


︸ ︷︷ ︸

g(x)

u + Jh(q)⊤λ (2.18)

where H : X → Rn collects the Coriolis and Gravity terms.

Discrete Dynamics
When the robot impacts the ground, it experiences impulsive effects governed by the
momentum transfer equation. To describe this, let h : X → Rh denote a collection
of holonomic constraints that become active during the continuous mode just after
impact. The momentum transfer across impact satisfies:

D(q+)q̇+ + Jh(q−)∆F = D(q−)q̇−

41

Figure 2.7: A 3D hopping robot traversing various hybrid domains.

where ·− denotes pre-impact quantities, ·+ denotes post-impact quantities, and ∆F
is the impulse that occurs through impact. To ensure consistency with the new
contact mode, the holonomic constraint in the post-impact phase must be satisfied.
Enforcing h(q+) = 0 ensures position consistency, and differentiating this constraint
once yields a velocity-level constraint:

J⊤
h (q+)q̇+ = 0.

Collecting these two equations yields a system of linear equations:D(q+) Jh(q−)
J⊤

h (q+) 0

  q̇+

∆F

 =
D(q−)q̇−

0


which can be solved to determine the post impact velocity q̇+. Solving for the
impulse force ∆F yields:

q̇+ = q̇− −D(q+)−1Jh(q−)∆F︸ ︷︷ ︸
≜∆(x−)

.

Hybrid Systems
A hybrid system experiences alternating phases of continuous and discrete dynam-
ics. Such systems arise naturally in legged locomotion, the primary application
considered in this thesis.

42

We model the hybrid system via a directed graph of vertices v ∈ V , each of which
contain a unique set of continuous-time dynamics that the system evolves under,
and edges e ∈ E which characterize how the robot traverses the continuous modes.
For each vertex v ∈ V , let Dv ⊂ X represent the admissible domain in which the
system state evolves, and nv denote the number of holonomic constraints restricting
the motion of the robot. Each hybrid transition e = (v1 → v2) ∈ E occurs when
the system state intersects the guard, denoted as Sv1 ⊂ X , triggering a discrete reset
governed by:

x+ = ∆e(x−),

where ∆e : Sv1 → Dv2 is the reset map describing the momentum transfer though
impact, and x− ∈ Dv1 and x+ ∈ Dv2 are the pre and post-impact states, respectively.
Collecting the various objects D = {Dv}v∈V , S = {Sv}v∈V , ∆ = {∆e}e∈E and
F = {fv}v∈V , we can describe a hybrid control system via the tuple:

HC = (V, E,D,S, ∆, F).

Remark: This modeling choice may feel strong for other systems which experi-
ence intermittent contact, such as manipulation-based systems, as there are likely
significantly more modes of operation.

2.4 Underactuated Systems
The term underactuation refers to robotic systems that have fewer actuators than
degrees of freedom. This imposes limitations on the achievable behaviors and ne-
cessitates careful consideration of how to most effectively use the actuation that is
present. Many systems experience underactuation, from walking robots to swim-
ming robots, and as such it is of general interest to construct platform-agnostic
techniques for controlling such systems. To begin, we introduce what it means to
be underactuated:

Definition 2.34. The robotic system (2.18) is said to be underactuated if rank(B) <

n, full actuated if rank(B) = n, and overactuated if rank(B) > n.

Given the tools developed in previous subsections, a natural first question is:

Question: Does there exist an output such that my system is full state
feedback linearizeable?

43

Figure 2.8: Classical examples of underactuated systems: a) Mass Spring Damper
Model, b) Cart Pole Model, and c) Double Pendulum.

The existence of such an output would be convenient, as then we could readily apply
the results from the previous section to stabilize the full system state. There exists a
very elegant result from geometric nonlinear control theory that provides necessary
and sufficient conditions under which a system can be rendered full state feedback
linearizeable, which leverages the tools from Section 2.1:

Theorem 2.35 (Sastry, Brockett, Isidori). There exists an output y(x) such that
the system (2.11) is full-state feedback linearizeable if and only if the following
conditions are met:

1. rank
([

ad0
f g(x) · · · adn−1

f g(x)
])

= n,

2. The distribution ∆(x) = span{ad0
f g(x), . . . , adn−2

f g(x)} is involutive.

The first condition is a controllability-like rank test, and is satisfied for almost all
pairs of vector fields f , g [109]. The second, however, imposes a stricter requirement
and is much more difficult to verify for general systems. To illustrate the practical
difficulty of applying this result, we turn to two motivating examples.

44

Example: 2D Mass Spring Damper

Consider the double mass-spring damper system in Figure 2.8a, in which
actuation is only applied to the first mass. The equations of motion are:M1 0

0 M2

 ẍ1

ẍ2

+
k2(x2 − x1)− k1x1 + b2(ẋ2 − ẋ1)− b1ẋ1

−k2(x2 − x1)− b2(ẋ2 − ẋ1)

 =
0
1

u,

and the systems is underactuated because rank(B)= 1 < 2. Despite this,
observe that the system is controllable. Next, two vector fields δ1(x), δ2(x) ∈
∆(x) as:

δ1(x) =
n−1∑
i=0

αi(x)AiB,

δ2(x) =
n−1∑
i=0

βi(x)AiB.

Then, their Lie bracket is given by:

[δ1, δ2](x) =
n−1∑
i=0

(
∂βi

∂x
αi(x)AiB − ∂αi

∂x
βi(x)AiB

)

=
n−1∑
i=0

(
∂βi

∂x
αi(x)− ∂αi

∂x
βi(x)

)
︸ ︷︷ ︸

≜γi(x)

AiB,

where each γi(x) is smooth, implying [δ1, δ2](x) ∈ ∆(x) and the distribution
is involutive. Therefore, by Theorem 2.35, there exists an output y such that the
system is full state feedback linearizeable. In fact, we can intuit that the output
y = x2 is a relative degree k = n = 4 output, and therefore allows us to full
state feedback linearize the system.

The above analysis holds for any linear system — perhaps obviously, for any control-
lable linear system there exists an output such that the system is full state feedback
linearizeable, regardless of whether it is underactuated or not. The next example
demonstrates that even simple nonlinearities significantly increase the complexity
of the analysis.

45

Example: Cart Pole

Consider the cart pole in Figure 2.8b, where actuation is applied only to the
cart. The equations of motion are given by:M + m ml cos θ

ml cos θ ml2

ẍ

θ̈

+
−mlθ̇2 sin θ

mgl sin θ

 =
1
0

u,

which is again underactuated. To apply Theorem 2.35, we must compute the
iterated Lie brackets:

ad0
fg = g =

 0
D(q)−1B


ad1

fg = [f, g] =
D(q)−1B

α(q, q̇)


ad2

fg = [f, [f, g]] =
β(q, q̇)

γ(q, q̇)


for appropriately defined (messy) functions α, β, γ. Is the distribution defined
by the span of the above vector fields involutive? Your guess is as good as mine.

As we can see from these examples, the fact that a system is underactuated is
insufficient to determine whether or not it is full state feedback linearizeable in
general. In fact, for certain classes of underactuated systems, such outputs can exist
[108]. These examples present a broader point though: even if the conditions of
Theorem 2.35 could be verified, doing so does not aid in the synthesis of such an
output. If true, we would know finding such an output is possible to find, but we
would not know how to do so. Therefore, we abandon this line of thinking, and
instead presume that systems with underactuation are not feedback linearizeable.
Given this new perspective:

Question: How can we produce control inputs which stabilize under-
actuated systems?

Answering this question will guide much of the remaining structure in this thesis. In
the next section, we begin developing the necessary machinery required to address
it. We begin by constructing a lens through which we can analyze not just the
evolution of the output coordinates, but the complete system state.

46

Zero Dynamics Coordinates

Continuing from the previous section, consider a vector relative degree r < n output
y(x) and its associated error coordinates η ∈ Rr. The first question we would like
to address is:

Question: When controlling the output y, what happens to the com-
plete system state x?

Given the error coordinates map Φη : X → Rr, we would like to construct a
complete change of coordinates Φ : X → Rn that includes both the error and
a complementary set of coordinates. Since Φη has r independent coordinates and
therefore forms an r-dimensional basis [24], we must augment it with n−r additional
coordinates that are orthogonal to η. The following classical result guarantees that
this is always possible:

Proposition 2.36 (Existence of Output Nullspace Coordinates [24]). Given an out-
put y of vector relative degree r, it is always possible to find n − r more functions
z = Φz(x) = [z1(x), . . . , zn−r(x)] such that the mapping Φ(x) = [Φη(x) Φz(x)]
is a (local) diffeomorphism.

This result allows us to express the system coordinates in (η, z) ∈ N × Z space,
where η captures the output dynamics and z captures the remaining behavior.

A subtle but import complication remains: although the input is being fully used
to regulate the output η, the residual dynamics ż may still appear to be effected by
the control input. There is a powerful result that provides conditions under which
the the zeroing coordinates can be expressed in a way that does not depend on the
control input:

Proposition 2.37. If the distribution G = span{g1(x), . . . , gm(x)} is involu-
tive, then it is always possible to find n − r more functions z = Φz(x) =
[z1(x), . . . , zn−r(x)] such that Lgj

zi(x) = 0 for all r+1 ≤ i ≤ n and all 1 ≤ j ≤ m.

This again is a challenging condition to check in general. Luckily, however, in the
next section we show that this is always possible for the robotic systems of interest.

With such coordinates, the residual dynamics are autonomous:

ż = Lf Φz ◦Φ−1(η, z)︸ ︷︷ ︸
≜ω(η,z)

,

47

where, importantly, they do not depend on the input u. This enables us to analyze the
behavior of such coordinates regardless of the control input applied. Furthermore,
we can analyze what happens and design controllers such that they have desirable
properties.

Remark: If the condition in Proposition 2.37 is satisfied, then the system will
always have a subspace that evolves autonomously, independently of the control
input. As such, one should always choose coordinates that satisfy the invariance
condition to provide a basis in which we can analyze this autonomous behavior.

One of the benefits of this decomposition is the following stability result:

Theorem 2.38 ([24]). Assume that the output coordinates η and z are exponentially
stable with Lyapunov functions Vη(η) and Vz(z), respectively. For suitably chosen
σ > 0, we have that V = σVη(η) + Vz(z) is an exponential Lyapunov function in
the output and zero dynamics space.

This result is extremely powerful — using our previously synthesized controllers
which exponentially stabilize the outputs, if we can ensure that the (low dimensional)
zeroing manifold is stable, then we can show stability of the complete system. One
important issue remains unresolved:

Question: How do we ensure that the zero dynamics are stable?

This question, again, will serve as a critical motivator for many of the constructions
later in this thesis, and lies at the heart of nonlinear control for underactuated
systems.

Robotic Underactuated Systems

Once again, verifying the conditions in Proposition 2.37 is generally infeasible.
However, for robotic systems, we can avoid this analysis by constructively generating
zero dynamics coordinates that do not depend on the control input. To this end,
assume that B ∈ Rn×m is full column rank and is tall, i.e., m < n, as is the case in
underactuated systems. We define the following coordinate change:

η = Φη(x) ≜
B⊤q
B⊤q̇

 , z = Φz(x) ≜
 Nq
ND(q)q̇

 (2.19)

for η ∈ N ⊂ X and z ∈ Z ⊂ X , where N ∈ R(n−m)×n is chosen to be a basis
for the left nullspace of B. Let us check the two required conditions: first, does the

48

coordinate change Φ(x) ≜ (Φη(x), Φz(x)) constitute a diffeomorphism between
X and N ×Z? Take the Jacobian at a point x:

B⊤ 0
0 B⊤

N 0
dD(q)

dq q̇ ND(q)

 .

By construction, the null space of the row space of B is the orthogonal complement
of the column space of B⊤. Because D(q) is positive definite and therefore full
rank for all q, the rows of ND(q) span the same space as the rows of N. Thus the
Jacobian is full rank and the transformation is locally invertible.

Next, verify that LgΦz ≡ 0: N 0
dD(q)

dq q̇ ND(q)

 0
D(q)−1B


which is equivalently zero as NB = 0. This implies that the z dynamics are
independent of the control input. With this, the transformation in (2.19) is a valid
decomposition, and therefore Φ−1 exists and any conclusions of stability of (η, z)
are directly transferable back to x.

Putting this together, the system dynamics in these new coordinates takes the form:η̇
ż

 =
 Fη
ω(η, z)


︸ ︷︷ ︸

f(ζ)

+
G

0


︸ ︷︷ ︸
g(ζ)

u (2.20)

where ζ ≜ (η, z) ∈ X ≜ N × Z . We refer to this transformation as the actu-
ation decomposition; it separates the system states into a set of directly actuated
coordinates (η), and a set of unactuated coordinates (z).

Remark: This choice of output can be generalized to other bijective functions of
the actuated joints, such as task space coordinates, as long as they form a square
set of outputs.

49

Hybrid Underactuated Systems
Given our discussion of hybrid systems, and of underactuated systems, we can
begin to analyze their combination. To this end, consider the hybrid dynamics in
the underactuation decomposition as:

N =



η̇ = f̂(η, z) + ĝ(η, z)u
ż = ω(η, z)

Φ−1(η, z) /∈ S

η+ = ∆η(η−, z−)
z+ = ∆z(η−, z−)

Φ−1(η, z) ∈ S.

Gronwall Bellman Lemma
We list a comparison principle that will be useful for later analysis:

Lemma 2.39 (Gronwall Bellman [117]). Let I = [a, b] ⊂ R be an interval, let
y : I → R and φ : I → R≥0 be continuous and nonnegative functions, and let
λ : I → R≥0 be a continuous, positive, and non-decreasing function. If y : I → R
satisfies:

y(t) ≤ λ(t) +
∫ t

a
φ(s)y(s)ds, for all t ∈ [a, b],

then it follows that:

y(t) ≤ λ(t)e
∫ t

a
φ(s)ds, for all t ∈ [a, b].

2.5 Optimization
Optimization plays a pivotal role in constructing stabilizing controllers for robotic
systems. It provides a principled and modular framework for embedding both
task objectives and physical constraints into a unified formulation. At its core,
optimization theory is concerned with finding points that minimize a cost function
while satisfying constraints. The general constrained optimization problem can be
written as:

p∗ = inf
x

c(x)

s.t. hin(x) ≤ 0

heq(x) = 0

where x ∈ X is the decision variable, c : X → R is the cost, hin : X → Rnin are
inequality constraints, and heq : X → Rneq are equality constraints.

50

To analyze and solve such problems, we often study the Lagrangian function, which
augments the cost with the constraints via dual variables:

L(x,λ,µ) = c(x) + λ⊤hin(x) + µ⊤heq(x)

where λ ∈ Rnin and µ ∈ Rneq are the dual variables, also known as the Lagrange
multipliers for the inequality and equality constraints, respectively. The augmented
form enables us to define the corresponding (unconstrained) dual problem:

d∗ = inf
x

sup
λ≥0,µ

L(x,λ,µ).

The solution to the dual problem provides a lower bound on the solution to the
original (primal) problem. That is, d∗ ≤ p∗, which is known as weak duality. There
is a very important class of problems, namely convex problems, for which stronger
statements can be made. To define this class, we introduce the notion of convexity:

Definition 2.40. A set C ⊂ Rn is convex if for all x1, x2 ∈ X and all η ∈ [0, 1], we
have that ηx1 + (1− η)x2 ∈ C.

Definition 2.41. A function c : X → R is convex if for all x1, x2 ∈ X and all
η ∈ [0, 1], we have that c(ηx1 + (1− η)x2) ≤ ηc(x1) + (1− η)c(x2).

A function being convex is equivalent to the requirement that the epigraph of the
function — the set defined by state/value pairs that lie above the function evaluation
— is a convex set. Convexity enables us many conveniences: any local minimum
is also global, and simple gradient-based methods can often efficiently reach the
solution.

A well known condition that guarantees strong duality for convex programs is
Slater’s condition:

Proposition 2.42 (Slater). If c, hin(x), and heq(x) are convex functions, and there
exists a point x∗ that is strictly feasible, then strong duality holds, i.e., d∗ = p∗.

Many optimization problems encountered in control theory can be formulated as a
member of the following class of convex programs:

Linear Prog. (LP) Quadratic Prog. (QP) Second-Order Cone Prog. (SOCP)

inf
x

c⊤x

s.t. Ax ≤ b

inf
x

x⊤Px + q⊤x

s.t. Gx ≤ h

Ax = b

inf
x

f⊤x

s.t. ∥Aix + bi∥2 ≤ c⊤
i x + di

Fx = g

51

For these optimization programs, many efficient numerical solvers exist. While
optimization is a broad and rich field in its own right, our focus moving forward will
be its application to control synthesis.

Optimal Control
We can specialize the original optimization problem to the field control theory by
constructing the following optimal control problem:

V (x0) = min
u(·)

∫ ∞

0
c(x(t), u(t))dt (OCP)

s.t. ẋ = f(x) + g(x)u, x(0) = x0

where c : Rn × Rm → R is a positive-definite cost function and V : X → R≥0

denotes the infinite horizon cost at the given initial condition. This formulation
is extremely powerful: it naturally incorporates system dynamics, constraints, and
control objectives into a single framework. Different philosophies on how to solve
this problem in practice are are presented next.

Hamilton Jacobi Bellman
We begin with the Bellman principle of optimality, which states that the value
function satisfies:

V (x(t)) = inf
u[t,t+dt]

{∫ t+dt

t
c(x, u)dτ + V (x(t + dt))

}
.

As this is a recursive constraint, in order to get a condition at a specific point,
consider a linear Taylor approximation of the value function:

V (x(t + dt)) = V (x(t)) + dV

dx
(f(x) + g(x)u)dt.

Plugging this into the value function equation yields:

V (x(t)) = inf
u[t,t+dt]

{
c(x, u)dt + V (x(t)) + dV

dx
(f(x) + g(x)u∗)dt)

}
.

Rearranging terms and taking the limit as dt→ 0 yields the famous Hamilton Jacobi
Bellman (HJB) equation:

0 = inf
u

{
c(x, u) + dV

dx
(f(x) + g(x)u))

}
.

52

Linear Quadratic Regulator (LQR)
As a first example, consider the simplest case to the above problem: an unconstrained
linear system with quadratic state and input cost, known as the Linear Quadratic
Regulator (LQR) problem:

V (x0) = min
u(·)

∫ ∞

0
x⊤Qx + u⊤Rudτ (LQR)

s.t. ẋ = Ax + Bu, x(0) = x0

where Q ∈ Rn×n and R ∈ Rm×m are positive-definite symmetric matrices. In this
case, we can solve for not only the optimal control action u∗ everywhere, but also
the global value function V : X → R≥0. We begin by assuming that the value
function takes the form V (x) = x⊤Px. Plugging this into the HJB condition from
earlier yields:

0 = min
u

[
V̇ (x, u) + x⊤Qx + u⊤Ru

]
= min

u

[
(Ax + Bu)⊤Px + x⊤P(Ax + Bu) + x⊤Qx + u⊤Ru

]
= x⊤(A⊤P + PA + Q)x + min

u

[
u⊤B⊤Px + x⊤PBu + u⊤Ru

]
.

Solving for the minimum over u yields:

u = −R−1B⊤P︸ ︷︷ ︸
≜K

x,

where K is the optimal feedback gain matrix from LQR. Plugging this form back in
for the minimizer over u yields:

0 = x⊤
(
A⊤P + PA + Q− 2PBR−1B⊤P + PBR−1B⊤P

)
x

which is achieved when P satisfies the well known Continuous Algebraic Riccati
Equation (CARE):

A⊤P + PA−PBR−1B⊤P + Q = 0.

Remark: Beautiful! Not only do we get a globally optimal feedback policy, but
we also get its associated value function. The solution to LQR is a refreshing
respite from the tortuous and prickly world of general solutions to optimal control
problems.

53

Figure 2.9: The phase portrait of the pendulum under the LQR feedback controller.

Finite-Horizon Optimal Control
Next, consider the optimization problem over a finite horizon of length T :

V (x0) = min
u(·)

∫ T

0
x⊤Qx + u⊤Rudτ + V (x(T))

s.t. ẋ = f(x) + g(u), x(0) = x0

where V : X → R≥0 is an estimate of the cost to go. If this is the true cost to go, then
this is equivalent to the infinite horizon problem. When we add constraints, we can
no longer find a closed form solution, and require turning to numerical optimization.

Indirect Methods (PMP):
We can try to directly apply the necessary conditions to the optimization problem.
To this end, consider the Hamiltonian:

H(x, u,λ) = c(x, u) + λ⊤(f(x) + g(x)u).

The Pontryagin principle of optimality yields the following condition:

ẋ = Hλ = f(x) + g(x)u∗

λ̇ = −Hx = dc

dx
(x) + λ⊤

(
df
dx

(x) + dg
dx

(x)u
)

54

with the boundary conditions x(0) = x0 and λ(T) = V (x(T)). One way of solving
this two point boundary value ODE is to start in a neighborhood of the origin where
the solution matches the LQR solution. This gives us values for x(T) and λ(T),
whereby we can flow the ode backwards in time to produce an optimal trajectory.
Unfortunately, using this method there is little way to shape the production of optimal
controllers from arbitrary points in the state space.

Direct Single Shooting (DDP/iLQR):
We now turn our attention to direct methods, which turn the above infinite dimen-
sional optimization program into a finite dimensional problem via discretization. In
a similar vein, we would like to leverage the conditions of optimality, but produce
a trajectory from an initial condition x0 in the state space. DDP follows a similar
principle of updating trajectories under principles of optimality backwards in time.
To begin, we assume that we have an initial condition x0 and a nominal control input
u(·) that converges us to a neighborhood of the origin.

As this is a direct method, we will first consider a numerical integration of the input
trajectory, known as the forward pass, which produces a sequence of {xk} and {uk}.
It will be convenient to write the state-action value function as:

Q(xk, uk) = c(xk, uk) + V (xk+1).

Taking a second order approximation of this function yields:

Q(xk, uk) ∼= Q(x̄k, ūk) +
Qx

Qu

⊤ xk − x̄k

uk − ūk


+ 1

2

xk − x̄k

uk − ūk

⊤ Qxx Qxu

Qux Quu

xk − x̄k

uk − ūk

 .

As the state-action value function depends on future states, we store these terms
backwards along the trajectory, termed the backward pass. Then, on the next
forward pass, we can take a second order Taylor approximation of the state-action
value function to get:

u∗
k = argmin

uk

u⊤
k Quuuk + (Qu + Qux(xk − x̄k))uk

where the constant terms can be dropped as they do not impact optimality. This
yields a pointwise QP at each timestep of the next forward pass to produce updates
δuk. This process of forwards and backwards passes is iterated until convergence.

55

Figure 2.10: The phase portrait of the pendulum under an optimal controller with
input bounds of [−1.5 1.5].

If the Hessians of the dynamics are omitted from the above terms, this algorithm is
known as iLQR.

The benefits of DDP and iLQR are only requiring small scale QPs to be solved
in the backward pass, and an adaptive discretization scheme on the forward pass.
Furthermore, (convex) input constraints are easily added to DDP/iLQR, as they
simply change the constraints in the forward pass QP. However, the assumption of
having a nominal controller that gets the state to a neighborhood of the origin is quite
strong, and DDP/iLQR really only works for local optimization around a nominal
trajectory.

Direct Multiple Shooting (SQP):
SQP lies on the other end of the spectrum, treating the optimal control problem as a
general optimization problem and forgoing any notion of control theoretic necessary
conditions for optimality. This method is again a direct method, which discretizes

56

the trajectory. We start with a linearization of the nonlinear dynamics at (x̄, ū):

ẋ ∼= f(x̄) + g(x̄)ū +
(

df
dx

(x̄) + dg
dx

(x̄)(ū)
)

︸ ︷︷ ︸
≜A

(x− x̄) + g(x̄)︸ ︷︷ ︸
≜B

(u− ū)

= Ax + Bu + f(x̄) + g(x̄)ū−Ax̄−Bū︸ ︷︷ ︸
≜C

.

If we assume that the control input is held constant over a discretization time
h > 0, these can be discretized exactly using the matrix exponential from earlier by
considering the augmented system:

d

dt


x
u
1

 =


A B C
0 0 0
0 0 0


︸ ︷︷ ︸

≜M


x
u
1

 Discretize−−−−−→ xk+1 =
[
1 0 0

]
eMh


xk

uk

1

 ,

which gives us a linear discrete time system. Linearizing the cost and constraints in
the same way results in a quadratic program that can quickly be solved:

minxk,uk

N∑
k=0

x⊤
k Qkxk + N⊤

k xk + u⊤
k Rkuk

s.t. xk+1 = Akxk + Bkuk + Ck, x0 = x(0)

xk ∈ X , uk ∈ U . (2.21)

This leads to large (but sparse) quadratic programs with many decision variables.
One school of thought to avoid this large problem is to observe that the state variables
are only a function of the initial condition and the control input sequence via:

xk+1 = Akx0 +
k∑

j=0
Ak−jBuj.

This leads to an equivalent problem, but reduces the number of decision variables
at the cost of creating a dense problem. Which one is better depends on the specific
problem being solved, but keeping the states as decision variables preserves sparsity
of the equality constraints (which can improve sparse solver speeds) and avoids
high powers of potentially near singular matrices. These methods can also be
mixed to produce banded density patters and keep the number of decision variables
(relatively) low. Regardless, both perspectives yield a quadratic program, for which
there are many open source solvers available.

In general, SQP is an extremely general and powerful method for solving optimal
control problems. Because it optimizes over states and inputs directly, both state
and input constraints can easily be added to the problem formulation.

57

Line Search
Once a state and input search direction δxk and δuk have been chosen, a line search
finds the best step length in those directions to take. Choosing the correct step size is
an important feature of a numerical optimizer as this choice can significantly effect
the convergence of an iterative algorithm like DDP or LQR. Primarily, we would
like to ensure that a step size α result in a decrease in the integrated cost function:

J(xk + αδxk, uk + αδuk) ≤ J(xk, uk) + cα(∇xJ(xk, uk)⊤δxk +∇uJ(xk, uk)⊤δuk)

for some constant c ∈ (0, 1) [118]. This is often searched for using backtracing,
which decreases the step size until this condition is satisfied. Many other methods
of line search exist — from considering curvature conditions to leveraging second
order information to select the optimal step size. When using these tools for real
time optimization like in MPC, the current mindset however is to take full steps
(α = 1), only run 1 SQP/DDP iteration, and hope that the algorithm converges in
time. This is motivated by the idea that the system is evolving in time as computation
is taking place, so spending too long finding the optimal solution will result in the
trajectory being stale and no longer useful.

2.6 Bézier Curves
Bézier curves offer a convenient basis for parameterizing solutions to optimal control
problems, dynamical systems, and desired trajectories. A curve b : I ≜ [0, τ] →
Rm for τ > 0 is said to be a Bézier curve [119] of order p ∈ N if it is of the form:

b(t) = pz(t),

where z : I → Rp+1 is a Bernstein basis polynomial of degree p and p ∈ Rm×p+1 is
a matrix whose columns are the p + 1 control points of dimension m. There exists
a matrix H ∈ Rp+1×p+1 (as in [79]) which defines a linear relationship between
control points of a curve b and its derivative via:

ḃ(t) = pHz(t).

This enables us to define a state space curve B : I → Rn:

B(t) ≜


b(t)

...
b(γ−1)(t)

 =


p
...

pHγ−1


︸ ︷︷ ︸

≜P

z(t). (2.22)

58

The columns of the matrix P ∈ Rn×p+1, denoted as Pj for j = 0, . . . , p, represent
the collection of n dimensional control points of the Bézier curve B in the state
space.

Bézier curves enjoy a number of desirable properties:

Property 2.43 (Convex Hull [119]).

B(t) ∈ conv({Pj}), j = 0, . . . , p, ∀t ∈ I.

Remark: Herein lies the beauty of Bézier curves — the convex hull property allows
us to make conclusions about the behavior of continuous time curves while only
reasoning about the discrete collection of control points.

Furthermore, we have that if the control points satisfy linear inequalities, then so
does the continuous-time curve:

Property 2.44 (Linear Bounding [120]). For a vector d ∈ Rk and a matrix C ∈
Rk×n, we have:

CPj ≤ d, j = 0, . . . , p =⇒ CB(t) ≤ d, ∀t ∈ I.

This property will allow us to express convex constraints along the entire curve as
a finite collection of convex constraints on the control points.

We will specifically be interested in producing Bézier curves that connect initial
conditions xd(0) ∈ Xd and terminal conditions xd(τ) ∈ Xd in a fixed time τ . Given
such boundary conditions, a Bézier curve B(·) which connects them must satisfy
the following set of equality constraints:

b(k)(0) = pHkz(0) = q(k)
d (0), k = 0, . . . , γ − 1, (2.23)

b(k)(τ) = pHkz(τ) = q(k)
d (τ), k = 0, . . . , γ − 1. (2.24)

Note that z(0) = [1 01×p]⊤ and z(τ) = [01×p 1]⊤. Then, collecting the constraints
in (2.23) and (2.24) yields:

p
[
H0

0 H1
0 . . . Hγ−1

0

]
= x0,

p
[
H0

p H1
p . . . Hγ−1

p

]
= xT ,

where Hi
j denotes the jth column of the matrix H raised to the ith power. It can be

algebraically verified that H has the form:

Hi
0 =

[
︸ ︷︷ ︸

i + 1

⋆ · · · ⋆ ︸ ︷︷ ︸
p − i

0 · · · 0
]⊤

, Hi
p =

[
︸ ︷︷ ︸

p − i

0 · · · 0 ︸ ︷︷ ︸
i + 1

⋆ · · · ⋆
]⊤

,

59

Figure 2.11: A visual guide to the properties of Bézier curves.

with nonzero entries ⋆. Taking D ∈ Rp+1×2n as:

D ≜
[
H0

0 H1
0 . . . Hγ−1

0 H0
p H1

p . . . Hγ−1
p

]
,

in the case that p ≥ 2γ−1 the columns are linearly independent and thus the matrix
D has full column rank, implying that a solution p exists (but is not unique unless
p = 2γ − 1). In the case that p > 2γ − 1, the constraint is under-determined and
can be resolved via a least squares solution, allowing for additional cost terms to be
optimized.

This leads to the following property:

Property 2.45 (Boundary Values [120]). Given a time τ > 0, two points x0, xτ ∈
Rn, and order p ≥ 2γ − 1, there exists a matrix D ∈ Rp+1×2n such that any curve
xd(·) with control points satisfying:

pD =
[
x⊤

0 x⊤
τ

]
(2.25)

also satisfies xd(0) = x0 and xd(τ) = xτ .

The next property will be useful in increasing the resolution of Bézier curves and
reduce the conservatism of their upper bounds. To do this, we introduce the notion
of a refinement of the interval I as:

60

Figure 2.12: A collection of some useful properties of Bézier curves.

Definition 2.46. A k-refinement of an interval [0, T] is a collection of times {τi} for
i = 0, . . . , k and associated intervals {[τi−1, τi]}with τi−1 < τi, τ0 = 0, and τk = T .

From this, we can split a Bézier polynomial B(·) into a sequence of B-splines:

Property 2.47 (Splitting [119]). Given the control points P of a Bézier polynomial
defined over the interval I and a k-refinement of I , there exists a collection of
matrices {Qi} for i = 1, . . . , k such that BQ(t) = PQz(t) satisfies BQ(t) ≜

B(τi + t
T

(τi+1 − τi)) for all t ∈ I .

Furthermore, given a curve of a specific order, we can increase the resolution of the
curve via:

Property 2.48 (Refinement [119]). Given control points P of an order p Bézier
polynomial and a desired order r > p, there exists a matrix R ∈ Rp+1×r+1 such that
BR(t) = PRz′(t) for z′ : I → Rr+1 satisfies BR(t) = B(t) for all t ∈ I .

Another property allows us to upper bound the path length of the curve via a function
of the control points:

61

Property 2.49 (Path Length [121]). The path length of a Bézier curve xd(·) is upper
bounded by the norm distance of its control points:

∫ T

0
∥ẋd(τ)∥2dτ ≤

p−1∑
j=0
∥Pj+1 −Pj∥2.

This upper bound is particularly useful for convex relaxations of path-length cost
functions, since it is expressed as a sum of norms over discrete control points.

Finally, it will be useful to operate with the (column-wise) vectorized versions of p
and P, defined as p⃗ ≜ vec(p) ∈ Rm(p+1) and P⃗ ≜ vec(P) ∈ Rn(p+1). With these
new representations, we have the following equivalences:

P⃗ = H⃗p⃗

D⃗p⃗ = vec
([

x⊤
0 x⊤

T

])
,

with H⃗ and D⃗ the vectorized versions of H and D, respectively.

Chapter 3: Philosophy of Layered Architectures

Contents
3.1 Problem Description . 63

3.2 The Pitfalls of Purely Tracking Layers 65

3.3 The Pitfalls of Purely Planning Layers 66

3.4 Hierarchical Solutions . 69

3.5 Layered Control Architecture Definition 71

3.6 Specialization to Robotic Path Planning 73

Layered architectures naturally balance speed and flexibility trade-offs.

63

3.1 Problem Description
To motivate the use of layered architectures for the control of complex robotic
systems, consider the nonlinear system:

ẋ = f(x, u) (3.1)

with state x ∈ Rn, input u ∈ Rm, and dynamics f : Rn ×Rm → Rn assumed to be
continuously differentiable on their domain. Towards the deployment of autonomous
systems, we would like to control (3.1) using high-level semantic commands such
as “get me an apple,” or “put away the dishes.” Achieving such tasks presents two
key challenges: understanding what the desired environment state should be and
how the robot can achieve it [122].

Recent advances in large language models (e.g., ChatGPT) provide a means of
addressing the first challenge by mapping abstract semantic tasks into goal states
and environment representations:

“Complete Task A” Language Model−−−−−−−−−−−→ xG,X

where xG ∈ Rn is a desired goal state and X ⊂ Rn is a state constraint set, such as
the free space in a cluttered environment. In general, this mapping may produce a
sequence of intermediate goal states and constraints, but without loss of generality
we will focus on a single instance.

Given this mapping, the remaining challenge is how to drive the system to the
goal state while satisfying state constraints X and input constraints U ⊂ Rm.
To formalize this, let k : Rn → Rm be a controller mapping states to control
actions. Given any initial condition x0 ∈ X , applying k results in a continuously
differentiable closed-loop trajectory xcl : I → X over some interval I ⊂ R≥0:

xcl(t) ≡ φ(t, x0; k) ≜ x0 +
∫ t

0
f(xcl(τ), k(xcl(τ)))dτ.

Our goal is to design a controller that drives the system to the desired goal state
while satisfying constraints, as summarized by the following problem statement:

Problem 3.1. Given an initial state x0 ∈ X , a goal state xG ∈ X , constraint sets
X ⊂ Rn and U ⊂ Rm, a horizon T > 0, and a tolerance ε > 0, design a controller
k : Rn → Rm such that the closed-loop trajectory xcl of system (3.1) satisfies:

• ∥xcl(T)− xG∥ ≤ ε

64

• xcl(t) ∈ X ⊂ Rn for all t ∈ [0, T]

• k(xcl(t)) ∈ U ⊂ Rm for all t ∈ [0, T].

Optimal control provides a constructive approach for solving Problem 3.1 by em-
bedding task objectives and constraints into a single framework via the following
optimization problem:

V (x0) = min
u(·)

∫ ∞

0
c(x(t), u(t))dt (OCP)

s.t. ẋ = f(x, u), x(0) = x0

x(t) ∈ X , u(t) ∈ U

where c : Rn × Rm → R is a positive-definite cost function and V : X → R+

denotes the infinite horizon cost at that point. This formulation naturally incorporates
constraints while providing a principled means of defining control objectives through
the choice of the cost function. We will investigate solution methods for (OCP),
discuss the associated trade-offs between optimality, feasibility, and computational
efficiency, and demonstrate that layered architectures provide an effective means to
balance these trade-offs.

Directly solving this infinite-dimensional, nonconvex optimization problem via
monolithic policy design is intractable in practice. Instead, we split the problem
into two levels of abstraction:

High Level Low Level

minu(·)

∞∑
k=0

C(xk, uk)

s.t. xk+1 = F(xk, uk)

xk ∈ X

min
u(·)

∫ ∞

0
c(x(t), u(t))dt

s.t. ẋ = f(x, u)

u(t) ∈ U ,

where the high-level controller focuses on planning over a (discrete) state model
F to navigate the nonconvex constraint space, and the low-level controller focuses
on stabilizing any dynamic instabilities of the continuous-time dynamics f while
satisfying the input constraints. Even within each level, however, we still face
challenging optimal control problems. To address this, we further decompose
each level into two layers: a planning layer that generates feasible trajectories
or waypoints, and a tracking layer that stabilizes the system along the plan. By
clearly distinguishing levels (high and low) as operating with different timescales

65

Figure 3.1: A solution to the abstract problem of “how” to drive systems to goal
states that leverages layered control architectures. This will serve as an outline for
the remaining sections of the thesis.

and system abstractions, and layers (planning and tracking) as feedforward and
feedback components within each level, we organize the overall control problem
into four interacting subproblems, as seen in Figure 5.14.

3.2 The Pitfalls of Purely Tracking Layers
The next sections will focus on the low level control problem, and motivate the
further splitting of this problem into planning and tracking layers. Solving (OCP)
globally over the domain X would yield a positive definite function V : X → R+

which satisfies the Hamilton-Jacobi-Bellman PDE. Such a solution is appealing —
from this function, a controller which achieves Problem 3.1 is directly given by:

k(x) = arginf
u

dV

dx
f(x, u) + c(x, u). (3.2)

Solving the HJB equation to determine V , however, is generally regarded as in-
tractable for high-dimensional nonlinear systems [123]. Therefore, alternative ap-
proaches approximate global solutions, such as Reinforcement Learning (RL), which

66

optimizes objectives stochastically through exhaustive simulation rollouts:

min
k

E
u(·)∼k
x0∼X

∫ ∞

0
c(x(t), u(t))dt

s.t. ẋ = f(x, u), x(0) = x0,

the solution of which would similarly produce a global feedback controller. Al-
though RL has recently shown significant promise towards solving challenging
robotic tasks [124]–[126], it remains highly data-intensive, often requiring millions
of simulation samples, struggles with long-horizon tasks, and is often unable to
generalize sufficiently beyond the training distribution. Moreover, these methods
do not inherently guarantee constraint satisfaction, requiring additional mechanisms
such as reward shaping or safety layers.

An alternative tracking layer approach is to decompose the goal tracking problem
and the constraint satisfaction problem into separate entities within a real-time
optimization framework. In this setting, Control Lyapunov functions (CLFs) can be
used to ensure convergence to the goal, and Control Barrier Functions (CBFs) can
be used to enforce state constraints, leading to the following CLF-CBF optimization
program:

min
u

u⊤u (CLF-CBF)

s.t. V̇ (x, u) ≤ −γV (x)

ḣ(x, u) ≥ −αh(x).

Splitting the problem up enables greater design flexibility, but such a formulation
relies on finding valid functions V and h. Although these can be readily produced in
certain scenarios, finding such functions in general often results in solving similarly
complex problems to the HJB PDE [127]. Furthermore, if these functions are not
compatible, such a program can often result in infeasibilities or local minima.

Regardless of the method, global solutions produced a priori suffer from a key
limitation — rigidity. Any change in constraints, goals, or system dynamics requires
re-solving the optimization problem from scratch, which is antithetical to the goal
of real-time adaptability. Furthermore, solving (OCP) once for a specific system
and environment offers little insight into how solutions generalize to new scenarios.

3.3 The Pitfalls of Purely Planning Layers
Given the complexity and rigidity of solving (OCP) globally, we next investigate the
use of local methods for controller synthesis. Instead of solving for a global feedback

67

policy, we consider trajectory optimization methods that generate state and input
control curves xd : R≥0 → Rn and ud : R≥0 → Rm, respectively, for individual
initial conditions x0. This shift from global to local solutions transforms the PDE
in (3.2) into an ODE via the method of characteristics, which can be efficiently
solved using numerical optimization tools. The simplest control strategy we could
consider to solve Problem 3.1 follows as a feedforward application of the computed
trajectory:

k(x, t) = ud(t). (3.3)

This controller, however, is fragile — any model mismatch, external disturbance, or
numerical imprecision will cause deviations from the planned trajectory. To analyze
this issue, we make the following assumption about solve accuracy and time:

Assumption 3.2. Each solve of (OCP) requires a nonzero computation time τ > 0
and will have numerical tolerance ϵ > 0, meaning the implied state trajectory xd(t)
will only approximately satisfy the dynamics:

∥ẋd(t)− f(xd(t), ud(t))∥ ≤ ϵ.

This error term captures the combined effects of numerical errors, solver inaccu-
racies, and model mismatches. In order to analyze the efficacy of the controller in
(3.3), we define the state tracking error as e(t) = x(t) − xd(t). We can bound the
associated evolution of the error signal via:

∥e(t)∥ =
∥∥∥∥e(0) +

∫ t

0
ė(τ)dτ

∥∥∥∥
≤ ∥e(0)∥+

∫ t

0
∥f(x, u)− ẋd∥dτ

≤ ∥e(0)∥+
∫ t

0
ϵ + ∥f(x, u)− f(xd, ud)∥dτ

= ∥e(0)∥+ tϵ +
∫ t

0
Lf∥e(τ)∥dτ.

Applying the Gronwall-Bellman Lemma 2.39, we obtain an upper bound on the
deviation at the solver interval t ∈ [0, T]:

∥e(t)∥ ≤ (∥e(0)∥+ tϵ)etLf ≜ ρ(t).

This bound reveals that even under ideal conditions and solving as quickly as
possible, tracking errors grow exponentially over time without the introduction of a

68

feedback term. As a result, xcl(t) deviates from the planned trajectory, leading to
potential constraint violations or instability.

One way to mitigate this accumulated error is to ensure that the desired trajectory
xd is open-loop robust to disturbances. That is, we can require all possible states the
system could reach under the worst-case tracking error to remain within the state
and input constraints. This perspective, a variant of tube MPC [128], leads to a
robust trajectory optimization problem:

min
u(·)

∫ ∞

0
c(x(t), u(t))dt

s.t. ẋ = f(x, u), x(0) = x0

x(t) ∈ X ⊖Bρ(t)(0), u(t) ∈ U ⊖ k(Bρ(t)(0))

where k(Bρ(t)(0)) denotes all possible control actions taken over the set Bρ(t)(0),
and ⊖ represents the Pontryagin difference. However, such a controller will result
in overly conservative behavior [128] as the planner is always considering the worst
case disturbance, and less conservative estimates of the disturbance reachable sets
are generally intractable for nonlinear systems [129].

A natural conclusion from this development is that we must introduce a notion of
feedback in a neighborhood of the nominal trajectory xd. To this end, we can modify
the plan to compute a disturbance-feedback policy via:

min
k

max
w∈W

∫ ∞

0
c(x(t), k(x(t))dt

s.t. ẋ = f(x, k(x)) + w, x(0) = x0

x(t) ∈ X , k(x(t)) ∈ U

where W ⊂ Rn is a differential form of the disturbance reachable set Bρ(t)(0).
Although this formulation accounts for the disturbances induced by tracking error,
it inherits the spatial complexity of the HJB equation and therefore significantly
increases the problem complexity. Even for discrete-time linear systems with poly-
topic sets W , such min-max formulations which optimize a control law over all
possible state–disturbance pairs have been shown to be an NP hard problem [130],
making it impractical for real-time application. The challenges with both global and
local solutions to (OCP) suggest the need for a control architecture that allows for
planning efficiently with real-time adaptability. In the next section, we introduce
hierarchical control as a structured solution to balancing this trade-off.

69

3.4 Hierarchical Solutions
In light of the challenges demonstrated in the previous two sections, we have shown
that neither feedforward nor feedback can solely provide satisfactory solutions to
Problem 3.1. These observations point towards an inherent tension in control design:
on one hand, we seek responsiveness and robustness to disturbance, and on the other,
we desire long-horizon reasoning and satisfaction of global constraints. Attempting
to encode both planning and feedback into a single monolithic policy quickly leads
to high complexity and reduced tractability. A natural question then arises:

Question: Is it necessary to solve all aspects of the control problem
at once, or are there benefits to decomposing it?

To this end, consider the following combined feedforward and feedback controller:

k(x, t) = ud(t) + kfb(x(t), xd(t)).

Here, ud(t) is a feedforward input generated by solving a trajectory optimization
problem, while kfb is a local feedback controller tasked with rejecting disturbances
and correcting deviations from the nominal state xd. Before proceeding, we need
a way to coordinate the interaction between the planning and tracking layer. To
achieve this, we formalize a key assumption about the interaction between the
planning layer and the tracking layer: the tracking error remains within a bounded
tracking invariant set, i.e., x − xd(t) ∈ E ⊂ Rn. Although this assumption may
initially seem strong, we will provide theoretical and empirical evidence supporting
its existence in the subsequent sections. With this, we can now take a fixed tube
MPC style approach [131], which modifies the desired trajectory to account for the
tracking error while maintaining the desired guarantees:

min
u(·)

∫ ∞

0
c(x(t), u(t))dt

s.t. ẋ = f(x, u), x(0) = x0 ⊕ E

x(t) ∈ X ⊖ E , u(t) ∈ U ⊖ k(E)

where ⊕ represents the Mikowski sum.

This formulation immediately yields several important benefits. First, because
the tracking layer performs disturbance rejection, the planning layer optimization
problem is able to plan on the deterministic system. Unlike other planning layer
solutions, this preserves computational efficiency while maintaining robustness to
disturbances. Second, because constraints can be directly enforced at the planning

70

Figure 3.2: The Pareto front of controller design, which trades off speed and flexi-
bility (a modernization of the trade-off discussed in [132]). Combining individual
blocks into a hierarchy enables fast and flexible solutions to the control task.

stage, the resulting controller is guaranteed to be feasible. Third, this architecture
is agnostic to the specific model implementation used at each layer. Therefore,
any model, objective, time horizon, or solution method can be used at each layer
(provided that the interface between the layers remains consistent) allowing for
generalizable controller design and deployment. These benefits directly arise from
coordinating layers through a carefully designed interface, exemplifying how a lay-
ered architecture achieves greater performance than its constituent parts individually,
as illustrated in Figure 3.2. In summary, the layered control architecture offers three
fundamental advantages:

1. Efficiency: Responsibility allocation across levels and layers of the architec-
ture enables real-time control, even for complex systems and tasks.

2. Feasibility: Properly defined interfaces between levels and layers enable
individual guarantees to compose into system-level guarantees.

3. Generalizability: Modularity enables component reuse across diverse tasks,
platforms, and environments.

Although there is an elegance in this splitting and coordination, it is important to
note that splitting up the problem is not without cost. Planning robust solutions
is necessarily suboptimal as it strictly shrinks the feasible set of the optimization
problem. This trade-off is central to layered architectures: what we give up in
global optimality, we gain in modularity, scalability, and real-time feasibility. In
many cases, this trade-off is not just acceptable, but necessary — in the next section,

71

Figure 3.3: A depiction of the six components that make up a level, as well as an
interface between the levels such that the assumptions of the lower level (L2) are
satisfied by the guarantees of the level above (L1).

we formally introduce layered architectures and provide concrete instances in the
context of solving Problem 3.1.

3.5 Layered Control Architecture Definition
To formalize the discussion in the previous section, we begin by introducing the
notion of a system [133]:

Definition 3.3. LetX denote the state space, U the input space, and f ⊆ X ×U ×X
the transition relation. A system Σ is given by the tuple Σ = (X ,U , f).

One way to mitigate complexity within a layered architecture is for each controller
block to leverage different system representations. To this end, we often rely on
planning models which serve as template systems that enable desired behaviors to
be constructed in a computationally tractable way. Next, letting P(X) denote the
power set over X , we define a component of the architecture as:

Definition 3.4. A component L = (In, Out, Σ, k,A,G) is a tuple consisting of
an input set In, an output set Out, a system Σ, a controller k : X × In → U ,
assumptions A ⊆ In, and guarantees G : A → P(Out).

Components can be categorized as levels (denoted Lj) which can be further refined
as layers within levels (denoted Lk

j) depending on the semantic purpose they serve.
In the context of this work, (high and low) levels will operate on distinct system ab-
stractions and timescales, and (planning and tracking) layers within these levels will

72

be used as refinements of each level resulting from implementation conveniences.
In other words, a level operates on a particular abstraction, while a layer is a finer
subdivision within that level. Both levels and layers will be combined to produce
layered control architectures.

To achieve the desired guarantee for each component, we must synthesize a controller
k whose closed-loop behavior meets the guarantee under inputs from the assumption
set. Given the differences in systems and controllers between components, care must
be taken when interfacing components. To make this interconnection precise, we
introduce the notion of an interface between components:

Definition 3.5. An interface exists between two components L1 and L2, denoted
L1 ⇆ L2 if In2 ⊆ Out1, there exists a surjective mapping Π1,2 : X2 → X1, and for
all y ∈ A1 we have that G1(y) ⊆ A2.

The above definition requires that outputs from L1 must satisfy the assumptions of
L2. During the design phase, L1 requires information regarding the assumptions
of L2. Critically, this implies that the interactions between these levels are not
strictly top-down: high-level plans must respect the performance capabilities of the
low-level controllers. Control architectures are characterized by bidirectional infor-
mation flow in which achievable references are passed downward and certificates of
performance are passed upward, enabling compositionality of control components
by design. In order to synthesize controllers at each level, we often rely on further
breaking levels down into layers:

Definition 3.6. A level Lj is refined by an ordered collection of layers {Lk
j}M

k=1,
denoted Lj

∼= L1
j ⇆ · · ·⇆ LM

j , if the highest layer satisfies In1 = In andA1 ⊆ A,
the lowest layer satisfies OutM = Out and GM ⊇ G, and for each layer there exists
interfaces such that Lk

j ⇆ Lk+1
j for k = 1, . . . , M − 1.

Given these constructions, we are now equipped to introduce the notion of layered
control architectures:

Definition 3.7. A layered control architecture H is an ordered collection of levels
{Lj}N

j=1, layers that refine each level Lj
∼= L1

j ⇆ · · ·⇆ LM
j for j = 1, . . . , N , and

interfaces such that Lj ⇆ Lj+1 for j = 1, . . . , N − 1.

73

3.6 Specialization to Robotic Path Planning
As a motivating example of this abstraction, consider a four-component layered
architecture tailored to solving Problem 3.1 consisting of a high and low level,
each with a planning and tracking layer. While other decompositions are possible,
this formulation reflects common approaches in robotics. Next, we define the
responsibilities of each component in the hierarchy. These specifications define the
inputs, outputs, assumptions, and guarantees — setting the stage for the constructive
synthesis developed in the following sections. For each component, the guarantee
is the intersection of the numbered guarantees, i.e., GK = ∩iGK,i, and the map Π is
a linear projection.

We begin at the lowest level of the hierarchy. As discussed in the previous section,
the low-level controller is responsible for ensuring that the system state x(·) tracks
a continuous-time trajectory xd(·) within a bounded tracking error set E , while
satisfying input constraints. We now reintroduce the low level controller in terms
of the formalization of Definition 3.4:

Low Level Tracking Layer LTracking
Low

• In : ιL = (xd, ud) ∈ C1(R+,XL)× C1(R+,UL)

• Out: yL = (x, u) ∈ C1(R+,XL)× C1(R+,UL)

• GL,1 : ιL 7→ {yL | x ∈ xd ⊕ EL}

• GL,2 : ιL 7→ {yL | u ∈ UL},

for EL ⊂ XL satisfying EL ⊂ Bε(0) for the desired tolerance ε > 0 defined in
Problem 3.1. The low level assumes, AL, that reference signal (xd, ud) lies in the
low level controller’s region of attraction, i.e., the trajectory passed down can be
stabilized.

Low Level Planning Layer LPlanning
Low

• In : ιL = (x̄d, ūd) ∈ C1(R+,XM)× C1(R+,UM)

• Out: yL = (xd, ud) ∈ C1(R+,XL)× C1(R+,UL)

• GL,1 : ιL 7→ {yL |ΠM, L(xd) ∈ x̄d ⊕ EM}

• GL,2 : ιL 7→ {yL | ud ∈ UL},

74

for EM ⊂ XM satisfying ΠH, M(EM) ⊂ Bε(0). Next, we define the high level tracking
layer, responsible for converting discrete waypoints into trajectories that robustly
satisfy the constraints.

High Level Tracking Layer LTracking
High

• In : ιM = ({x̄k}, {Xk}) ∈ XH × P(XH)

• Out: yM = (x̄d, ūd) ∈ C1(R+,XM)× C1(R+,UM)

• GM,1 : ιM 7→ {yM |ΠH, M(x̄d(t)) ∈ Xk⊖ΠH, M(EL)∀t ∈ [kT/N, (k+1)T/N)}

• GM,2 : ιM 7→ {yM |ΠH, M

(
x̄d

(
kT
N

))
∈ x̄k ⊕ EM}.

This component assumes, AM , that each waypoint is reachable from the previous
waypoint. It guarantees that the planned trajectories lie in the buffered free space,
and that the plan reaches a neighborhood of each waypoint.

At the top of the hierarchy, the high level planning layer selects waypoints and
constraint sets to pass down to the low level controller. It assumes,AH , that the goal
point, xG is reachable from the initial condition, x0 under the hierarchical controller
composition.

High Level Planning Layer LPlanning
High

• In: ιH = (x0, xG,X) ∈ XH ×XH × P(XH)

• Out: yH = ({x̄k}, {Xk}) ∈ XH × P(XH)

• GH,1 : ιH 7→ {yH | x̄0 = x0 and x̄N = xG }

• GH,2 : ιH 7→ {yH | Xk ⊆ X for k = 0, . . . , N}

• GH,3 : ιH 7→ {yH | x̄k ∈ Xk for k = 0, . . . , N},

where X ⊆ XH is the free space.

The high level, if feasible, guarantees a path connecting the initial condition to
the goal which traverses a sequence of collision free sets. Having defined each
component and their interfaces, we arrive at the central result of this section: a
properly designed hierarchy composes independent assumptions and guarantees
into a system-level guarantee of satisfaction of Problem 3.1:

75

Theorem 3.8. The hierarchical controller defined by the compositionH : LHigh ⇆

LLow solves Problem 3.1 if the high level planning layer is feasible at time t = 0.

Proof. If the high level planning layer is feasible at time t = 0, then it can produce
a sequence of points which connect x0 to xG. In order to show that this results in
completion of the problem statement, observe that the each interface ensures the
outputs of the layer above is contained within the assumptions of the layer below
— as such, feasibility of the problem ensures that all assumptions and guarantees
are satisfied. Define ΠH, L ≜ ΠH, M ◦ ΠM, L to map states from the low level
to the high level. The high level tracking layer plans x̄d with sufficient margin
that ΠH, L(xcl(t)) ∈ Xk satisfies state constraints. As the high level planning layer
guarantees thatXk ⊂ X , we can conclude that the hierarchy enforces state constraints
as well. Furthermore, as the low level controller is able to enforce tracking of the
guarantee, we have that ΠH, L(xcl(T)) ∈ xG ⊕ ΠH, M(EL), as well as the input
constraint u ∈ UL. This achieves the first objective of getting in a neighborhood of
the goal. Therefore, we conclude that we are able to solve Problem 3.1.

This layered structure mirrors control architectures extremely common in prac-
tice: high-levels reason over global objectives, and low-levels generate constraint-
respecting trajectories and track them with robustness margins. Furthermore, we
have demonstrated that these components compose to solve Problem 3.1. Crucially,
the specific models and solution methods inside each component have been left un-
defined — as long as the interfaces are honored, each component can implement any
method. In the following sections, we constructively synthesize controllers which
satisfy these contracts for legged robotic systems.

Chapter 4: Low Level Tracking Layer

Contents
4.1 PD Control . 77

4.2 Data-Driven Performance via Preference Based Learning 81

4.3 Data-Driven Safety . 86

4.4 Summary . 92

Closed loop performance is the ultimate metric of success for feedback controllers.

77

As discussed in the previous chapter, the role of the low level controller is to track
desired trajectories coming in from the high level. Specifically, we would like to
design a controller such that:

∥xcl(t)− xd(t)∥ ≤ ε,

for the smallest possible ε > 0 (implying the best tracking performance).

4.1 PD Control
From here on, we will consider the vector relative degree γ = 2 and square output
y : X → Rm, and associated error coordinates η = [y ẏ]. These represent desired
trajectories for the actuated coordinates (the joints) of the robot. A PD controller is
of the form:

u = −Kp(y− yd(t))−Kd(ẏ− ẏd(t)) + uff(t),

for positive definite gain matrices Kp and Kd, where uff(t) is a feedforward control
input computed from a model of the robot. This is a model-free approach to
stabilizing to a desired trajectory, and to this day is still the workhorse for stabilization
in real-world systems. A natural place to begin our investigations into low level
control is to see how well this basic controller works and our robots of interest.
Where it fails, more sophisticated techniques will be required.

Quadruped
We start by investigating the use of a PD controller on Vision 60. The quadrupedal
robot was first tested on a consistently graded 13◦ grassy slope with minimal surface
variation, which was replicated in RaiSim by creating a plane of constant incline.
The quadruped was next asked to traverse a grassy slope just after it had rained with
inclination ranging from 20◦ to 25◦. In order to emulate the varying slope in RaiSim,
a terrain was created with a sinusoidally oscillating height varying between 20◦ and
25◦ with a frequency that approximated that of the outdoor environment. As can be
seen in the gait tiles in Figure 4.1, the PD controller allows the robot to successfully
amble across both the 13◦ slope and the 20◦ and 25◦ slope despite the unmodeled
variation in slope and lowered friction effects. See [134] for a video demonstration
of the experimental validation of the quadruped, in which we also showed all five
gaits walking on slopes of 0◦, 13◦, 15◦, 20◦, 25◦ in RaiSim.

In addition, we logged 20 seconds of experimental data, and compared them with
the desired ambling gait designed by the optimization, as seen in Figure 4.2 with

78

Figure 4.1: Full steps of gait tiles for the Vision 60 ambling in outdoor grasslands.
(Top) Comparison between simulation and experiments for a 13◦ slope. (Bottom)
Walking on a ramp with varying slopes of 20◦ − 25◦.

Figure 4.2: Phase portraits of the designed gaits (solid lines) vs. experimental data
(transparent overlay) for quadrupedal walking on 13◦ (red) and 20◦ − 25◦ (blue)
slopes. HR, HP, K are short for hip roll, hip pitch and knee, accordingly.

phase portraits. Note the difference in the desired behavior for the two terrains.
These plots demonstrate that PD control produces an empirical tracking invariant
around a desired trajectory for a quadruped. As we can see with the quadruped,
simply tracking an a priori defined time varying trajectory is enough to result in

79

Figure 4.3: Time and state based control on AMBER. (Top) Time-based PD control
on AMBER quickly leads to falling over due to instabilities in the underactuated
center of mass state. (Bottom) Phase-based control incorporates feedback with
respect to the underactuated states and enables stable walking.

full system stability, even on rough terrain. As alluded to earlier, this is due to the
inherent stability in quadrupedal robots.

Biped
Unlike quadrupeds, tracking a single open loop trajectory is insufficient for stabi-
lizing bipeds. This can be seen in Figure 4.3, where AMBER quickly becomes
unstable and falls over. This is due to the fact that there is no feedback with respect
to the underactuated coordinates, the hip position. As these dynamics are unstable
and persist autonomously, they cause the system to be destabilized. This can also be
analyzed through the lens of zero dynamics by noting that ω(ηd(t), z) is unstable.

For planer bipeds, there is a convenient way to parameterize the desired trajectory to
add feedback to these underactuated coordinates. To do this, we introduce a phasing
variable, τ : Q → [0, 1], given by:

τ(q) =
δhip(q)− δ+

hip

δ−
hip − δ+

hip

, (4.1)

where δhip : R5 → R defined as δhip(q) = [−lt− lf , −lf , 0, 0, 0]q is the linearized
hip position with lt and lf the length of the robots tibia and femur, respectively. The
constants δ+

hip and δ−
hip are the linearized hip positions at the beginning and the end

80

of a step, ensuring that τ(q) increases monotonically in time within a step. We are
now well equipped to define the relative degree 2 ([109]) outputs y : Q → R4 as
the difference between the actual output ya and the desired output trajectory yd:

y(q) ≜ ya(q)− yd(τ(q)), (4.2)

with α being the coefficients of a Bézier polynomial coming from the trajectory
generation step. The actual output is given by the actuated coordinates: ya(q) =[
04×1 I4×4

]
q. The nominal controller for this system is then given by the PD

controller
kP D(x) ≜ −KP y(q)−KDẏ(q),

with proportional gain KP ∈ S4
++ and derivative gain KD ∈ S4

++. As seen in
Figure 4.3, this feedback term is capable of stabilizing the system in a neighborhood
of the desired periodic orbit. Unlike earlier, our output now becomes a function of
the zero dynamics coordinate, and renders the zero dynamicsω(ηd(τ(q)), z) stable.
In fact, for this planar system, stability of the zero dynamics can be directly enforced
as part of the trajectory optimization problem.

Note that in order to successfully do this reparameterization, we must ensure that the
phasing variable function is monotonically increasing over the step, which ensures
that τ is a bijection between [δ+

hip δ−
hip] and [0 1]. This too can be added as a constraint

to the trajectory optimization problem. Within this framework, the step length is
fixed — rather, stability is derived from speeding up or slowing down the gait along
its predefined trajectory based on where the underactuated state is.

Hopper
In the case of ARCHER, the control task is complicated by the fact that the actuated
coordinates live on the manifold S3. When the system states lie on a Lie group, we
must be more careful about the computation of the error coordinates. Consider the
quaternion q ∈ S3, the body frame angular rate as ω ∈ s3, and a desired orientation
qd ∈ S3. Then, the torque is given by:

u = −Kp log(q−1
d q)−Kdω + uff(t).

The log : S3 → s3 map can also be approximated via Im : S3 → s3, which takes
only the imaginary component of the quaternion and can be used to simplify the
computation. The log map is a distance preserving bijection, and the imaginary
map can be thought of as a linear projection map onto the Lie algebra.

81

As with the biped, applying this controller to a fixed trajectory will cause the robot
to almost immediately fall over. Unlike the biped, there is no easy way to produce
a phasing variable to stabilize this system as this would require finding a bijection
between the 2D underactuated center of mass position and the interval [0 1], which
is impossible due to the difference in dimension. As such, we will need to be more
intelligent about the design of the desired trajectory that we try to stabilize to, which
we will investigate in the next chapter. The remainder of this section will focus on
the low level control of the planar biped AMBER, as the low level for quadrupeds
can effectively be controlled with PD control, and we do not yet have the necessary
tools to discuss how to stabilize the 3D hopping robot.

4.2 Data-Driven Performance via Preference Based Learning
As we saw in the previous section, simple controllers like PD can generate empirical
tracking invariants given well tuned gains. In theory, switching to a controller that
leverages a model of the system could provide a much tighter tracking invariant;
however, in practice model based controllers are often difficult to tune because of
modeling errors and an unintuitive relationship between the gains and the resulting
performance. We specifically investigate the use of CLF based controllers at the
low level in an attempt to improve the tracking error bound, which provide formal
guarantees of exponential convergence under idealized conditions but are often
sensitive to model mismatch and controller parameterization. Therefore, in this
section, we investigate the use of a Bayesian Optimization method called Preference
Based Learning [135], which leverages user preferences to maximize unmeasurable
user utility functions as a means of model-based gain tuning, in the hopes that it
will provide better tracking invariants for our systems of interest.

With the goal of constructing a CLF, recall that the feedback linearized error coor-
dinates η for the output y from (4.2) have the following dynamics:

η̇ = Fη + Gv. (4.3)

Instead of solving the CTLE as we did in (2.4), we instead phrase this as an LQR
problem whereby we evaluate the continuous time algebraic Riccati equation:

F⊤P + PF + PGR−1G⊤P + Q = 0, (CARE)

which has a solution P ≻ 0 for any Q = Q⊤ ⪰ 0 and R = R⊤ ≻ 0. From (CARE),

82

we can construct a rapidly exponentially stabilizing CLF (RES-CLF) [136]:

V (η) = η⊤IϵPIϵη, Iϵ =
1

ϵ
I 0

0 I

 , (4.4)

where 0 < ϵ < 1 is a tunable parameter that drives the (rapid) exponential conver-
gence. Any feedback controller, u, which can satisfy the convergence condition:

V̇ (η) = LfV (η) + LgV (η)u ≤ −1
ϵ

λmin(Q)
λmax(P)︸ ︷︷ ︸

γ

V (η), (4.5)

will then render rapidly exponential stability for the output dynamics (4.3).

To enforce (4.5), a quadratic program (CLF-QP) [137], with (4.5) as an inequality
constraint can be posed. Implementing this controller on physical systems, which
are often subject to additional constraints such as torque bounds or friction limits,
suggests that relaxation for the inequality constraint should be used. The introduction
of relaxation and the need to reduce torque chatter on physical hardware lead to the
following relaxed (CLF-QP) with incentivized convergence in the cost [138]:

u∗ = argmin
u∈Rm

∥L2
f y(x) + LgLf y(x)u∥2 + wV̇ V̇ (x, u) (CLF-QP+)

s.t. umin ⪯ u ⪯ umax.

Parameterization of CLF-QP
For the following discussion, let a = [a1, ..., av] ∈ A ⊂ Rv be an element of a
v−dimensional parameter space, termed an action. We let Q = Q(a), ϵ = ϵ(a), and
wV̇ = wV̇ (a) denote a parameterization of our control tuning variables, which will
subsequently be learned. Each gain ai for i = 1, . . . , v is discretized into di values,
leading to an overall search space of actions given by the set A with cardinality
|A| = ∏v

i=1 di. For the AMBER robot, v is taken to be 6 with discretizations
d = [4, 4, 5, 5, 4, 5], resulting in the following parameterization:

Q(a) =
Q1 0

0 Q2

 ,
Q1 = diag([a1, a2, a2, a1]),
Q2 = diag([a3, a4, a4, a3]),

ϵ(a) = a5, wV̇ (a) = a6,

which satisfies Q(a) ≻ 0, 0 < ϵ(a) < 1, and wV̇ (a) > 0 for the choice of bounds,
as summarized in Table 4.1.

83

Learning Framework
As in [139], the preference-based learning framework leveraged in this section is
aimed at regret minimization, defined as sampling N actions {a1, . . . ,aN} such
that:

{a1, . . . ,aN} = argmin
a∈A

N∑
i=1

(U(a∗)− U(ai)) ,

where A ⊂ R|a| is the discretized set of all possible actions, U : A → R is the
underlying utility function of the human operator mapping each action to a subjective
measure of “good,” and a∗ is the action maximizing U . This iterative process of (1)
querying the operator for feedback, (2) modeling the underlying utility function, and
(3) sampling new actions, is repeated in each subsequent iteration. This paradigm
of optimization is especially interesting, as it is not even a zeroth order method —
we can never evaluate the function U ; rather, we rely on comparisons of subsequent
trials to estimate the gradient of the utility. Once the algorithm terminates, the best
action after the completion of the experiment is given by â∗ = argmaxa∈A µ(a).

Learning to Walk in Experiments
Preference-based learning was applied to the realization of optimization-based con-
trol on two separate robotic platforms: the 5 DOF planar biped AMBER, and the 22
DOF 3D biped Cassie, as can be seen in the video [140]. As illustrated in Fig. 4.4,
the experimental procedure had four main components: the physical robot (either
AMBER or Cassie), the controller running on a real-time PC, a human operator
providing feedback, and a secondary PC running the learning algorithm. Each
action was tested for approximately one minute, during which the behavior of the
robot was evaluated in terms of both performance and robustness. User feedback in
the form of pairwise preferences and ordinal labels was obtained after testing each
action via the respective questions: “Do you prefer this behavior more or less than
the last behavior,” and “Would you give this gait a label of very bad, neutral, or
very good.” After user feedback was collected for the sampled controller gains, the
posterior was inferred over all of the uniquely sampled actions, which took up to

Table 4.1: Learned Parameters for AMBER.

AMBER
Pos. Bounds Vel. Bounds Bounds

Q Knees a1:[100, 1500] a3:[10, 300] ϵ a5:[0.08, 0.2]
Q Hips a2:[100, 1500] a4:[10, 300] wV̇ a6:[1, 5]

84

Secondary PC

CARE

Preference-Based Learning

Figure 4.4: The experimental procedure for Preference Based Learning for gain
tuning.

Figure 4.5: Very low utility (top) where the robot was unable to walk unassisted and
maximum posterior utility (bottom) where stable walking was achieved.

0.5 seconds. The experiment with AMBER was conducted for 50 iterations, lasting
one hour.

85

Figure 4.6: Phase plots and torques commanded. For torques, each colored line
corresponds to a different joint, with the black dotted lines being the feedforward
torque. The gains corresponding to a “very bad” action (top) yield torques that
exhibit poor tracking on joints and torque chatter. On the other hand, the gains
corresponding to the learned optimal action (bottom) exhibit much better tracking
and no torque chatter.

Results with AMBER — CLF-QP+

During the first half of the experiment, the algorithm sampled a variety of gains
causing behavior ranging from instantaneous torque chatter to induced tripping due
to inferior output tracking. It is important to note that none of the initial sampled
values led to unassisted walking.

By the end of the experiment however, the algorithm had sampled 3 gains which
were deemed “very good,” and which resulted in stable walking. Gait tiles for an
action deemed “very bad,” as well as the learned best action are shown in Fig. 4.5.
Additionally, tracking performance for the two sets of gains is seen in Fig. 4.6,
where the learned best action tracks the desired behavior to a better degree.

Features of this optimal action, compared to a worse action sampled in the beginning
of the experiments, are outlined in Fig. 4.6. In terms of quantifiable improvement,
the difference in tracking performance is shown in Fig. 4.7. The magnitude of
the tuned parameters, ηt, illustrates the improvement that preference-based learning
attained in tracking the outputs it intended to. At the same time, the tracking
error of the constant parameters, ηnt, shows that the outputs that were not tuned
remained unaffected by the learning process. This quantifiable improvement is
further illustrated by the commanded torques in Fig. 4.6, which show that the
optimal gains result in much less torque chatter and better tracking as compared to
the other gains.

86

Figure 4.7: Output error of the tuned parameters ηt (left) and untuned parameters
ηnt (right).

4.3 Data-Driven Safety
In the previous section, we leveraged learning to improve the performance of low-
level controllers through better parameter tuning. We now shift focus from per-
formance to safety, aiming to enforce an additional certificate—namely, forward
set invariance—at the same control layer. In particular, we investigate how safety-
critical constraints, encoded as control barrier functions (CBFs), can be robustly
enforced despite modeling error by learning the projected disturbances that com-
promise the CBF condition.

In practice, the system dynamics (3.1) are not known during control design due to
parametric error and unmodeled dynamics. Instead, a nominal model of the system
is utilized: ̂̇x = f̂(x) + ĝ(x)u, (4.6)

where f̂ : Rn → Rn and ĝ : Rn → Rn×m are assumed to be Lipschitz continuous
on Rn. By adding and subtracting the right hand side of (4.6) to (3.1), the dynamics
of the system are:

ẋ = f̂(x) + ĝ(x)u +

d(x,u)︷ ︸︸ ︷
f(x)− f̂(x)︸ ︷︷ ︸

b(x)

+ (g(x)− ĝ(x))︸ ︷︷ ︸
A(x)

u, (4.7)

where the unknown disturbance d(x, u) = b(x) + A(x)u is assumed to be time
invariant, but depends on the state and input to the system. If the function h :
Rn → R is a CBF for the nominal model (4.6) on C, the uncertainty in the dynamics
directly manifests in the time derivative of h:

ḣ(x, u) = ∇h(x)(f̂(x) + ĝ(x)u)︸ ︷︷ ︸̂̇h(x,u)

+∇h(x)b(x)︸ ︷︷ ︸
b(x)

+∇h(x)A(x)︸ ︷︷ ︸
a(x)⊤

u. (4.8)

87

Figure 4.8: Geometric visualization of Projection-to-State Safety. The system is
able to leave the safe set C, but remains within the larger set Cδ. Maximum possible
deviation from the safe set grows larger with |δ|∞.

Given that h is a CBF for (4.6) on C, let k : Rn → Rm be a Lipschitz continuous
state-feedback controller such that ̂̇h(x, k(x)) ≥ −α(h(x)). Defining the projected
disturbance as:

δ(x) ≜ ḣ(x, k(x))− ̂̇h(x, k(x)) = b(x) + a(x)⊤k(x), (4.9)

yields:
ḣ(x, k(x)) ≥ −α(h(x))− δ(x). (4.10)

The projected disturbance δ appears in the time derivative of the barrier function ḣ,
and potentially leads to unsafe behavior since it compromises the CBF condition. If
an upper bound δ on |δ|∞ is known (or determined heuristically), it could be directly
incorporated into the inequality enforced in the controller:

k(x) = argmin
u∈Rm

1
2∥u− kd(x)∥2

2 (δ-CBF-QP)

s.t. ̂̇
h(x, u)− δ ≥ −α(h(x)).

While this will enforce safety of the original set C, it can be exceedingly conservative
if δ is larger than the actual projected disturbance. Furthermore, as the projected
disturbance is a function of the state, its magnitude (and possibly sign) may change
along a trajectory, leading to additional conservativeness in this approach.

Instead, we consider a learning approach to resolve the impact of δ. To motivate
such an approach, consider the following setting: in an experiment, the system is
allowed to evolve forward in time from a particular initial condition and under a
given state-feedback controller. During this experiment, data is collected which
provides a discrete-time history of the CBF, h. This time history is smoothed and

88

numerically differentiated to compute an approximate time history of the true value
of the time derivative of the CBF, ḣ. This yields a collection of input-output pairs:

Di = ((xi, k(xi)), ḣi) ∈ (Rn × Rm)× R (4.11)

whereby a dataset D = {Di}N
i=1 can be constructed. Given a nonlinear function

class H : Rn → R and a loss function L : R× R → R, a learning problem can be
specified as finding a function δ̂ ∈ H to estimate δ via empirical risk minimization:

inf
δ̂∈H

1
N

N∑
i=1
L
(̂̇

h(xi, k(xi)) + δ̂(xi), ḣi

)
. (ERM)

A controller can be synthesized which incorporates δ̂ as follows:

k(x) = argmin
u∈Rm

1
2∥u− kd(x)∥2

2 (δ̂-CBF-QP)

s.t. ̂̇
h(x, u) + δ̂(x) ≥ −α(h(x)).

Note that compared with the standard CBF formulation, the extended safe set with
Equation (δ̂-CBF-QP) shrinks from (2.17) to

Cδ =
{
x ∈ Rn : h(x) + γ(|δ − δ̂|∞) ≥ 0

}
.

We directly build upon the episodic learning framework from [141], [142] by seeking
to learn δ. Our approach is outlined in Algorithm 1. In each episode, the algorithm
runs the current controller to collect data, learns a new δ̂ using the newly collected
data, and synthesizes a new controller. In this prior work, which was applied to
less complex dynamical systems, the collected data was rich enough to determine
a control affine structure. In many contexts, such as bipedal robots, such a degree
of diversity is infeasible without damaging the system. We instead directly learn δ

as a function of the previous controller k via a recursive relationship, as updating
the estimator leads to the definition of a new projected disturbance δ′ = b(x) +
a(x)⊤k′(x). This yields a projected disturbance δ learned iteratively by modifying
δ̂ over the course of multiple episodes. This episodic approach to safety-critical
control is captured in Algorithm 1.

Control Barrier Functions for Stepping-Stones

The stepping-stone problem is captured through the use of virtual stepping-stones,
which shrink over the course of a step to confine foot placement to a safe region

89

Figure 4.9: Barrier function stepping stones on AMBER. (Left): Schematic diagram
of the AMBER-3M robot with position coordinates. (Center): Schematic of the
foot placement in the stepping-stone problem. The boundaries of virtual stepping-
stones are captured via the blue and orange vertical lines. (Right): Virtual stepping
stone width as function of the phase variable τ(q).

defined on a targeted stone [143]. The CBFs used to specify these foot position
constraints are given by:

h1(q) = R(τ(q))− (Ox − Fx(q)), (4.12)

h2(q) = R(τ(q)) + (Ox − Fx(q)), (4.13)

where Fx(q) is the horizontal position of the swing foot and Ox > 0 is the horizontal
position of the center of stepping-stone. The virtual stone width is given by the
function R : R→ R:

R(τ(q)) = ar − 1
1 + ar(e−m(τ(q)−1) − 1) + 1 + r (4.14)

Algorithm 1 Projected Disturbance Learning (PDL)

Input: CBF h, CBF derivative estimate ̂̇h, model class H, loss function L, nominal
state-feedback controller k0, number of episodes T , initial condition x0
Output: Augmented Controller kT

1: for j = 1, . . . , T do
2: Dj ←Experiment(x0, kj−1) ▷ Execute experiment
3: δ̂ ←ERM(H,L,Dj ,

̂̇
h0) ▷ Fit estimator

4: ̂̇
hj ← ̂̇

h0 + δ̂ ▷ Update derivative estimator
5: kj ← δ̂-CBF-QP(̂̇hj) ▷ Synthesize new controller
6: end for

90

where m > 0 determines the decay rate of the barrier function, (1+a)r is half of the
targeted stone width, and 1+r defines the half the width of the virtual stepping-stone
when τ = 0. These functions are visualized in Figure 4.9. The safety constraints can
be interpreted as keeping the swing foot horizontal position in an interval centered
at the middle of the stepping-stone, where the interval shrinks as τ increases.

As this formulation of CBFs is position-based and therefore relative degree two, we
employ the exponential control barrier function (ECBF) extension technique [115]
to both CBFs to attain the relative degree 1 CBFs: he,i(x) ≜ Lf hi(x) + αehi(q).

The final Stepping Stone QP (SS-QP) controller combines the robustifying term of
(δ̂-CBF-QP) with the stepping-stone ECBF extensions of (4.12) and (4.13):

k(x) = argmin
u∈Rm

1
2∥u− kP D(x)∥2

2 (SS-QP)

s.t. L2
f̂ h1(x) + LĝLf̂ h1(x)u + αeLf̂ h1(x) + δ̂1(x) ≥ −α(he,1(x))

(4.15)

L2
f̂ h2(x) + LĝLf̂ h2(x)u + αeLf̂ h2(x) + δ̂2(x) ≥ −α(he,2(x)).

(4.16)

Simulation and Experimental Validation
In this section we apply our episodic learning framework (Algorithm 1) to the
AMBER-3M platform in both simulation with injected model uncertainty and on
hardware with the model error inherent to real-world systems. In each instance
the estimator δ̂ was implemented as a neural network with two hidden layers of
50 hidden units using the ReLU activation function. The network was trained
minimizing mean absolute error using mini-batch gradient descent. Mean absolute
error was chosen over other loss functions for its robustness to outliers. The same
controller (SS-QP) was deployed in the RaiSim [144] simulation environment and
on the AMBER-3M hardware platform, as seen in the supplementary video ([145]).
The complete learning code can be found at [146].

Simulation

The controllers and learning algorithm were first validated in simulation. Model
error was introduced by increasing the inertia of all limbs on the true model by a
factor of ten while maintaining constant mass. Due to the underactuated nature of
the robot and the relationship between step length and zero dynamics stability, not
every set of stepping stones is navigable, even if safety is perfectly enforced with

91

Figure 4.10: Simulation (S) and Hardware (H) data where model mismatch causes
violations. (Far-Left): Simulation where the barrier functions h1 (solid blue) and
h2 (solid orange) are enforced via a CBF-QP. The (δ-CBF-QP) is also shown for δ1
(dashed blue) and δ2 (dashed orange), which results in more conservative behavior
over many steps. (Mid-Left): After three episodes of learning the (SS-QP) in
simulation, the maximum barrier violation decreases from 2.0 to 0.3 cm. (Mid-
Right): Hardware where the barrier functions h1 (blue) and h2 (orange) enforced via
a CBF-QP. (Far-Right): After two episodes of learning on hardware, the maximum
barrier violation decreases from 9.2 to 1.9 cm via the (SS-QP).

respect to the CBFs. Therefore, a feasible stepping stone configuration was first
generated for the robot to traverse with stones of 4 cm in width. Without knowledge
of the modified model (δ̂1(x) = δ̂2(x) = 0), the controller did not satisfy the CBF
constraints (4.15-4.16), resulting in a maximum violation at foot placement of 2.0
cm, causing the robot to miss the stepping stone and fall over. Three episodes of the
PDL algorithm were run, after which the maximum violation was reduced to be 0.3
cm, only 15% of the original violation. Additionally, the (δ-CBF-QP) controller was
implemented, which ensured safety but resulted in extremely conservative behavior,
resulting in poor qualitative walking, i.e., harsh foot strikes and an over-bending
torso. A comparison of the barrier functions h1 and h2 over the steps with these
controllers can be seen in Figure 4.10.

Hardware

The same nominal model for the robot was used in the hardware experiments as
in simulation, with model uncertainty presenting itself as significant friction in the
joints, as well as imperfect mass and inertia measurements. The PDL algorithm
was implemented on the AMBER-3M robot across a sequence of two episodes.

92

Figure 4.11: Gait tiles for Episode 2 of learning showing the AMBER-3M robot
safely traversing a set of stepping stones. Notice the change in step width and added
lean of the torso induced by the barrier functions.

The stepping stone configuration was specified to the controller with stones of 8
cm in width. As with simulation, the CBF-QP resulted in a maximum violation
of the barriers of 9.2 cm due to model error. After running the PDL algorithm
for two episodes, the maximum violation of the barriers was 1.9 cm, only 21% of
the original violation, as depicted in Figure 4.10. Although learning improves our
estimate of the safe set size, there is still uncertainty in the stone size. This was
accommodated by utilizing physical stones which were 10 cm in width. The 7.3 cm
reduction in stone size mismatch captures the change from |δ|∞ to |δ − δ̂|∞. Gait
tiles for this improved traversal of the stepping stones are shown in Figure 4.11.

Across both simulation and hardware, the learned controller in (SS-QP) remained
feasible throughout all episodes, even in the presence of significant modeling er-
ror. This empirical observation supports our hypothesis that learning the projected
disturbance enables more precise constraint satisfaction without introducing infea-
sibility. More broadly, these results demonstrate how data-driven techniques can
complement model-based design to enforce safety certificates at the low level of the
control stack.

4.4 Summary
This chapter demonstrated how low-level controllers can be tune and refined using
learning to meet both performance and safety objectives, even in the presence of
model uncertainty. The effectiveness of these controllers, however depends on the
trajectories that they are tasked with tracking. In the next section, we discuss the
design of trajectories that stabilize the underactuated states of the legged robots.

Chapter 5: Low Level Planning Layer

Contents
5.1 Offline Trajectory Generation 94

5.2 Whole Body Model Predictive Control 98

5.3 Model Predictive Control on Manifolds 110

5.4 Learning Walking Behaviors by Enforcing Set Invariance 119

5.5 Zero Dynamics Policies . 126

5.6 Summary . 146

Intelligent trajectory design can stabilize underactuated robots.

94

As we turn our attention to the underactuated states of legged robots, we can no
longer rely on myopic controllers like Control Lyapunov Functions or Control Barrier
Functions for safety and stability. Instead, we require a notion of foresight: planning
trajectories over a horizon to see how current actions will effect future states. In
this section, we see that intelligent trajectory design (namely through some variant
of optimal control) can stabilize underactuated robots.

5.1 Offline Trajectory Generation
All of the results in the previous section leverages a predefined trajectory xd(·).
Therefore, we begin by discussing how to produce such a trajectory. The first
method of producing a desired trajectory xd(·) is to perform trajectory optimization
once, offline, prior to execution. To do this, we set up the following hybrid optimal
control problem:

V (x0) = min
u(·)

∫ T

0
c(x(t), u(t))dt (5.1)

s.t. ẋ = f(x) + g(x)u, x(t) /∈ S

x+ = ∆(x−), x(t) ∈ S

x(t) ∈ X ,

u(t) ∈ U

where the cost incentivizes efficient forward walking, and the constraints X and U
ensure the robot picks up its feet and satisfies other physical constraints like joint
and torque limits. A trajectory optimization problem as above could produce a
single T second long behavior; however, if we want indefinite walking we would
have to increase the problem size past what would be tractable. Instead, for periodic
behaviors like nominal walking on flat ground, we can leverage the Hybrid Zero
Dynamics (HZD) framework [147]–[149]. The HZD method reduces the infinite-
time optimal control problem to a finite-time one exactly by enforcing the following
periodicity constraint:

x∗ = ∆ ◦φT (x∗)

where the step duration T can be a decision variable. For true HZD theory, we would
like to enforce the HZD constraint ∆(Z ∩ S) ⊂ Z , but as trajectory optimization
only occurs over a single path, we can only enforce a periodicity constraint (which
enforces this impact invariance constraint at a point on Z). Methods to enforce the
HZD condition over the entire output zeroing manifold are explored in Section 5.5.

95

Figure 5.1: Through 50 iterations of experiments, the proposed combination of
preference-based learning and HZD optimization transforms failed gaits into robust
walking on the AMBER-3M robot with a pair of compliant legs.

Gait Tuning via Preference Based Learning
Given that predefined gaits worked to stabilize the planar biped AMBER, we ask:

Question: How can we produce desired trajectories that result in the
most performant, robust closed loop behavior on hardware?

As such, we transition to again using preference based learning, but instead of
learning the controller gains, returning to PD control and learning the parameters
for the trajectory optimization problem. Specifically, we parameterize the constraint
set X , and run trials to find the best constraints for walking. Each trial began
by initializing AMBER-3M in a static double-support configuration, starting the
treadmill, and attempting to push the robot into the designed periodic orbit. If the
resultant dynamics were not stable, extra precaution was taken to give the gait the
best chance at succeeding. Once the gait reached its orbit, the robot was released and
the robustness of the gait to various disturbances was investigated. After both gaits
were executed on the physical robot, a preference was collected from the human
operator observing the physical realization of the walking. In some iterations, video
footage was also reviewed before giving a preference. The criteria used to determine
preferences between gaits were the following (in order of prioritization): capable of

96

Get User Feedback

Experimental walking for each

Lowest
Utility

Highest
Utility

Preference-Based Learning

Posterior after
Iteration i

Controller

Outputs

New Iteration:

HZD Optimization
for each

Figure 5.2: The experimental procedure is illustrated in terms of each iteration i
with n denoting the number of gaits compared in each iteration. The experiments
presented in this section used n = 2. Using this notation, the set of n actions given
to the HZD optimization is denoted: ai = {a1

i , . . . , an
i }. The resulting n sets of

Bézier coefficients given to the controller are denoted αi = {α1
i , . . . , αn

i }.

walking, robust to perturbations in treadmill speeds, robust to external disturbance,
does not exhibit harsh noise (e.g., during impact), is visually appealing (intuitive
judgment from operator).

In this section, we leverage two configurations of the robot: 1) the point-foot
configuration, AMBER3M-PF and 2) the spring-foot configuration, AMBER3M-
SF [106]. We first demonstrate the learning framework on AMBER3M-PF, with the
corresponding rigid point-foot model used in the gait generation. To emphasize the
scalability of our method, we repeat the exact procedure applied to AMBER3M-PF
on AMBER3M-SF, but intentionally do not account for changes in the robot model
and instead still generate gaits assuming the rigid-body model. Furthermore, we
execute the gaits on hardware using the same controller with unmodified gains.
Historically, robots with compliance are difficult to generate gaits for because of
the resulting complexities which include: increased degrees of freedom of the
system; the addition of a double support domain to the hybrid dynamics; and
increased stiffness of the dynamics. Past success with compliant bipeds has relied
on sophisticated models [150]. Therefore, the fact that our method yields stable
walking despite the unmodeled compliance highlights its effectiveness.

97

Figure 5.3: Gait tiles with increasing posterior utility values from left to right are
shown for the the rigid model (top) and spring model (bottom). The phase portraits
of the hip (qh) and knee (qk) of the stance leg (blue) and swing leg (yellow) are
shown below each corresponding gait, plotted over 10 seconds of data. The phase
portraits clearly indicate that for both AMBER3M-PF and AMBER3M-SF the gaits
evolved to be more experimentally robust.

A summary of the experimental results is illustrated in the supplementary video
[151], with additional videos and material available at [152]. The experiment with
AMBER3M-PF was run for 30 iterations and sampled 27 unique gaits. Since
gaits quickly met the first criterion of being able to walk, preferences were mainly
dictated based on the robustness and appearance of the experimental walking. The
initial gaits tried on hardware, although optimal subject to the imposed constraints,
resulted in inferior trajectory tracking and power consumption. As the algorithm
progressed, the gaits became significantly smoother, more robust to disturbance,
and energy efficient. This is exemplified in Fig. 5.3 which illustrates the gaits
corresponding to the minimum, a middle, and the maximum posterior utility; the
iterations corresponding to when these gaits were first sampled is 1, 21, and 26,
respectively. In Fig. 5.3, we note significantly lower velocity overshoot for all
of the limbs and tighter tracking shown in the phase portraits for the gaits with
higher posterior utility. It is also interesting to note the framework’s success at
improving the efficiency of the experimental walking: a latent property which is
discernible to the human operator even though it is not immediately measured.
When the procedure was repeated on AMBER3M-SF, many of the initial gaits were

98

unable to walk due to the unmodeled compliance. Thus, gaits exhibiting periodic
walking were strongly preferred. This second experiment was conducted for 50
iterations and sampled 37 unique gaits. Again, three gaits are selected for further
discussion corresponding to the minimum, a middle, and the maximum posterior
utility values. Gait tiles and phase portraits for these are again shown in Fig. 5.3.
These experiments demonstrate that preference-based learning provides an effective
framework for tuning both control gains and trajectory parameters in complex, high-
dimensional robotic systems. Across all platforms—ranging from planar bipeds
with limited actuation to 3D compliant robots—the approach identified parameter
settings that improved robustness, tracking performance, and subjective gait quality,
despite significant model mismatch.

5.2 Whole Body Model Predictive Control
While in theory HZD-based gait generation produces provably stable periodic walk-
ing, it suffers from several limitations in practice. First, by design it yields a single,
fixed trajectory — there is no mechanism for starting stopping, or modulating the
behavior without enumerating and precomputing every possible gait offline.

While effective for steady-state behaviors, having a single predefined gait lacks flex-
ibility in dynamic or uncertain environments where online adaptation is required.
In the next section, we examine how to extend these ideas by embedding such tra-
jectories within receding-horizon model predictive control (MPC) to enable online
replanning and therefore produce stabilizing feedback. Second, tracking an offline
generated gait with a naive tracking controller cannot enforce essential constraints
such as input bounds or footstep constraints while retaining stability guarantees. In
fact, the enforcement of these constraints for the closed loop system needs to be dealt
with at design time. Finally, as seen in Section 4.1, HZD relies on the existence of
a phasing variable that is a bijection between the center of mass state and time and
monotonically increases over time. Such a phasing variable only exists in planar set-
tings, as the lateral motion of walking is monotonic, and, more critically, the center
of mass state is two dimensional, barring a bijection from existing with the scalar
interval of time. As time-based trajectory tracking is unstable for underactuated
systems, as seen in Section 4.1, heuristic regulators are always needed to achieve
3D walking, which once again voids the theoretical guarantees of the method.

Given the complexities of underactuated control, we now transition now from offline
gait generation to online gait generation and investigate the following question:

99

Figure 5.4: Multi-rate control architecture incorporating whole-body planning via
MPC and low level tracking controller.

Question: Does optimal control provide a constructive means of sta-
bilizing underactuated systems?

We begin by considering full-model model predictive control (MPC) on the AMBER
platform, where the planning layer optimizer directly computes reference trajectories
for the tracking layer to track.

Nonlinear Model Predictive Control
Nonlinear MPC solves an optimization problem in a receding horizon manner by
solving the following finite time nonlinear optimal control problem, similar to that
discussed in Section 2.5:

minimize
u(·)

ϕ(x(tH)) +
∫ tH

0
l(x(t), u(t), t)dt, (5.2a)

subject to: x(0) = x0, (5.2b)

ẋ = f(x) + g(x)u, (5.2c)

x(t+
i) = ∆c(x(ti)), (5.2d)

heq(x, u, t) = 0, (5.2e)

hin(x, u, t) ≥ 0, (5.2f)

where tH is the length of the horizon, ϕ : X → R is the terminal cost, l : X ×
Rm × R → R is the time-varying running state-input cost, and ti are times of
contact mode transitions. Note that for the following discussion we assume that
the contact times ti are fixed a priori based on the desired gait. The optimal
control problem is solved in real-time by updating the initial conditions (5.2b)
with the measured state of the system. Eq. (5.2c) describes the system dynamics.
heq : X×Rm×R→ Req and hin : X×Rm×R→ Rin are generalized path equality

100

and inequality constraints, respectively. There exist various approaches to solve this
problem as outlined in [153]. We take a direct-multiple shooting transcription of
the problem together with a sequential quadratic programming approach to handle
nonlinearities [154]. Inequality constraints (5.2f) are implemented through relaxed-
barrier penalty functions:

p(x) =


−µ log(hin(x)) if hin(x) > δ

−µ ln(δ) + µ
2

((
hin(x)−2δ

δ

)2
− 1

)
o.w.

(5.3)

for parameters δ, µ ≥ 0 as in [155].

Whole-Body Motion Planning & Control
Our nonlinear MPC problem will be constructed using the OCS2 toolbox [156],
which provides convenient interfaces to the Pinocchio [157] rigid body library
and CppAd [158] automatic differentiation tools. Our formulation assumes that
the contact schedule associated with a given locomotion mode (standing, stepping
in place, walking) is given by the user. The fixed contact schedule assumption
simplifies the optimization problem as the sequence of domains and timing of
contact mode transitions does not need to be optimized [159], [160]. The position
of the foot at contact is captured in the optimization problem through its kinematic
relationship with joint coordinates. Moreover, we assume the user provides a desired
base pose and velocity to the MPC. In this section we discuss the formulation of
bipedal locomotion planning as an MPC problem as posed in (5.2).

System Dynamics
Due to the affine relationship between generalized accelerations q̈, torques τ , and
contact forces λ and assuming the torques do not directly impact the floating-base
equations of motion, the system dynamics may be rewritten to interpret the joint
accelerations q̈j and contact forces λ, instead of the torques τ , as inputs. The
computational benefit of this reparameterization has been shown for reactive whole-
body control [161] and offline trajectory optimization [162]. To see this, we write
the dynamics in terms of non-actuated base coordinates and fully actuated joint
coordinates: Dbb, Dbj

D⊤
bj Djj

 q̈b

q̈j

+
hb

hj

 =
 0
Bj

 τ +
J⊤

c,b

J⊤
c,j

λ. (5.4)

101

The base acceleration may be expressed as:

q̈b = −D−1
bb

hb +
[
Dbj −J⊤

c,b

] q̈j

λ

 , (5.5)

and assuming the legs are fully actuated (Bj is invertible), the corresponding joint
torques may be expressed as:

τ = B−1
j

D⊤
bjq̈b + hj +

[
Djj −J⊤

c,j

] q̈j

λ

 , (5.6)

maintaining an affine dependence on q̈j and λ. The base dynamics in (5.5) fully
encode the challenge of underactuation and encapsulate the core of the floating-
base dynamics. Equation (5.6) plays a secondary role and is only required when
formulating torques constraints. We may view the control inputs to optimize over as:

u =
[
q̈⊤

j , λ⊤
]⊤

, (5.7)

with the corresponding system dynamics defined as:

ẋ =


q̇

D−1
bb

(
−hb −Dbjq̈j + J⊤

c,bλ
)

q̈j

 . (5.8)

In order to avoid large discontinuities in the optimized trajectory, the contact tran-
sition maps in (5.2d) have been set to identity maps for the online MPC program,
with exponential damping of the contact point velocity after impact being regulated
through the stance foot constraint in (5.12), defined in Section 5.2. Due to the
assumption of a fixed contact schedule, inclusion of the contact transition map does
not fundamentally change the complexity of the optimization problem [160].

Cost Functions
The cost function is formulated as a nonlinear least square cost around a given state
and input reference trajectory. To that end we define the set of tracking errors as
follows:

ϵx = x− xref(t), ϵu = u− uref(t), ϵi =


pi − pi,ref(t)
vi − vi,ref(t)
ai − ai,ref(t),

 ,

where xref is the state reference, uref is the input reference, and pi, vi, ai ∈ R3 with
i ∈ {1, 2} are the Cartesian position, velocity, and accelerations of the ith foot, with

102

corresponding references pi,ref, vi,ref, ai,ref. The references xref and uref are defined
heuristically (see Section 5.2) or via a walking gait synthesized offline using HZD.
The running state-input cost l is given by:

l(x, u, t) = 1
2ϵ

⊤
x Qϵx + 1

2ϵ
⊤
u Rϵu + 1

2
∑

i

ϵ⊤
i Wϵi, (5.9)

where Q, R, and W are positive definite weighting matrices.

To pick an appropriate weighting for the terminal cost, we approximate the infinite
horizon cost by solving an unconstrained Linear Quadratic Regulator (LQR) problem
using a linear approximation of the dynamics and a quadratic approximation of the
running costs (5.9) around the nominal stance configuration of the robot. The
positive definite Riccati matrix PLQR of the cost-to-go is used to define the quadratic
cost around the terminal reference state:

ϕ(x) = ρ

2ϵx(T)⊤PLQRϵx(T), (5.10)

where ρ > 0 is a hyperparameter. Setting ρ = 1.0 would express approximately
equal importance of the integrated running cost and terminal cost, and ρ→∞would
make the terminal cost behave as an equality constraint. We found good performance
for the heuristic reference at ρ = 1.0 and for the HZD reference at ρ = 10.0. Note
that this cost does not penalize deviation from the stance configuration used to
produce the LQR solution, but rather provides a systematic way to scale the relative
importance of all of the degrees of freedom of the robot in the cost.

Reference Trajectories
A key component in establishing closed loop stability and recursive feasibility is
the choice of terminal components [163], either as terminal cost in (5.2a) or as
constraints on the terminal state, x(tH), to lie in a control invariant set. In prac-
tice, for nonlinear complex systems, it is challenging to prove that such conditions
hold. Extending the prediction horizon is a common choice to reduce the relative
importance of the terminal components [164]. However, for systems where long
prediction horizons are not feasible due to computational limits, careful choice of
terminal components directly translates to the overall performance of the controller,
as we will empirically show in this work.

HZD Trajectory HZD state and input reference trajectories, xref(t) and uref(t),
are found offline for the whole-body nonlinear dynamics using the FROST toolbox

103

Figure 5.5: Heuristic (left) and HZD (right) terminal states.

[165] and stored as Bézier polynomials. This process is completed by fixing a
target gait sequence and a forward velocity, and adding various other state and
input constraints to a nonlinear trajectory optimization program which ensure the
underactuated dynamics of the system display stable periodic behavior. For planar
systems, stability can be enforced directly in the optimization program [166], and
for general systems it can be verified a posteriori via the Poincaré return map [147].
The foot references pi,ref(t), vi,ref(t), and ai,ref(t) are entirely determined by xref(t).

Heuristic Trajectory To evaluate the relative impact of using a gait synthesized
offline via HZD in the cost function, we produce a heuristic reference trajectory to
be compared against. In particular, the state trajectory xref(t) is composed of a user-
commanded base pose and velocity, and a static nominal joint configuration. The
input reference uref(t) is defined with zero joint accelerations and contact forces that
are evenly distributed among each foot in contact in the nominal joint configuration
such that the weight of the robot is compensated. The foot references pi,ref(t),
vi,ref(t), and ai,ref(t) are designed by extracting the nominal touchdown and liftoff
locations below the hip at the middle of the contact phase and fitting a smooth
hand-designed swing reference trajectory. The heuristic and HZD-based terminal
state are visualized in Fig. 5.5.

By construction, both the HZD gaits and the gait sequences defined by MPC have

104

an associated phasing variable, i.e., a parameter in the interval [0, 1] which mono-
tonically increases over the step. During execution, the phasing variable is attained
from the current MPC gait sequence that the robot is in, and is used to construct
xref and uref over the MPC horizon. In this section, we use a time-based phasing
variable from MPC to interpolate the HZD trajectory.

Remark: In phase-based HZD control, stability is achieved via implicit mod-
ification of the contact times, whereas in MPC, stability is achieved via explicit
modification of the footstep locations.

Constraints
The following constraints are imposed in problem (5.2). All inequality constraints
are implemented as soft constraints with the relaxed log barrier functions in (5.3).

Gait-Dependent Constraints These constraints capture the different modes of
each leg at any given point in time determined by the specified gait sequence. We
enforce the user-defined gait and avoid foot scuffing of a swing leg by constraining
the swing foot motion in the orthogonal direction to the ground surface, n ∈ R3, to
follow the Cartesian reference trajectory:

n⊤(ai − ai,ref(t) + kd(vi − vi,ref(t)) + kp(pi − pi,ref(t))) = 0 (5.11)

where kd, kp ∈ R≥0 are feedback gains chosen to achieve asymptotic tracking. The
foot position in the direction parallel to the ground is not directly constrained; rather,
tracking is enforced via the cost function described in Section 5.2. For a stance leg
we enforce a stationarity constraint in Cartesian space through:

ai + kdvi = 0. (5.12)

Contact Force Constraints The following constraints require the contact forces
at each foot to match the designation of swing and stance legs: λi = 0, i is a swing leg

λi ∈ C(n, µc), i is a stance leg.
(5.13)

The first constraint requires no contact force from a swing leg, as it does not contact
the ground. The second constraint requires the contact force of a stance leg to
lie in the friction cone C(n, µc) defined by the surface normal n and the friction
coefficient µc = 0.6. This second-order cone constraint is expressed in the local
surface-aligned frame:

µcλi,3 −
√

λ2
i,1 + λ2

i,2 ≥ 0. (5.14)

105

Only linear forces are present as the robot has point feet, and that the friction
constraint also enforces a unilateral contact constraint as it requires λi,3 ≥ 0. Note
that the complementarity constraintλ⊤psw = 0 requiring the product of the reaction
forces and height of the swing foot to be zero (which is bilinear and challenging to
optimize over) gets resolved by enforcing a fixed contact schedule.

Joint and Torque Limit Constraints The joint coordinates and joint coordinate
velocities are enforced to lie in the set of minimum and maximum joint positions
and velocities through state inequality constraints: x ∈ [xmin, xmax]. Similarly, the
joint torques can be computed by Eq. (5.6) and should lie within joint torque limits
τ ∈ [τmin, τmax].

Low Level Controller
As shown in Fig. 5.4, the state and input trajectories generated by MPC are inter-
polated at a high frequency and converted to a feed-forward control torques, τMPC,
via (5.6). As the feed-forward torque is model-based, we compensate for model
errors when executing the controller on hardware by adding a PD torque, τPD, and
a friction compensation torque, τFC, to the feed-forward torque:

τ = τMPC + τPD + τFC. (5.15)

The friction compensated torque τFC was a simple regression model fit to data
collected from sinusoidal motions of the legs, which helped overcome static friction
in the gearbox. The total torque τ is send to the open loop torque controlled BLDC
motors.

The time discretization in the multiple shooting scheme is set to 15ms and we allow
for a maximum of 10 SQP iterations per MPC problem. All planning, control, and
estimation loops were done on separate threads on an offboard Ryzen 9 5950x CPU
@ 3.4GHz. Benchmarks of the maximum obtainable MPC frequency for different
horizon lengths can be seen in Table 5.1. To isolate how the system’s behavior
depends on horizon length, all experiments were conducted with a consistent MPC
frequency of 100Hz.

Table 5.1: MPC Planning Frequency (10 SQP Iterations)

Horizon Length [s] 2.0 1.0 0.5 0.2
MPC Frequency [Hz] 270 480 670 850

106

Figure 5.6: Push recovery using the proposed method under a disturbance — notice
the aperiodic stepping that was planned online in order to reject the disturbance,
something that is not possible with traditional HZD based methods.

As can be seen in the supplementary video [167], the proposed MPC formulation
is capable of simultaneously stabilizing the underactuated system dynamics and
synthesizing valid motion trajectories for a broad range of gait pattern and target
velocities both in simulation and on hardware. To evaluate the effect of changing
reference signals on the feasibility and robustness of the full control pipeline, a
sequence of disturbances of increasing magnitude was applied in simulation with
the following MPC configurations:

• MPC with No Terminal: The proposed whole-body MPC with heuristic ref-
erences for the running cost (refer to Sec.5.2) and no terminal cost.

• MPC with Heuristic Terminal: Same as above, but with heuristic references
included as a terminal cost.

• MPC with HZD Reference: The proposed whole-body MPC with HZD-based
references for the running and terminal cost (refer to Sec. 5.2).

• Lumped Mass MPC: Uses a simplified dynamics model for the planning stage
by moving leg inertia to the torso, otherwise identical to MPC with Heuristic
Terminal.

• HZD with PD: An offline generated HZD trajectory tracked by a joint level
PD controller.

The results of these simulations are summarized in Table 5.2. First, we remark that
the Lumped Mass MPC model was introduced to highlight the effects of planning
over the full system dynamics for the given platform. The particular structure of

107

this model was chosen to resemble some properties of the simplified models while
allowing for an implementation independent comparison. Although the Lumped
Mass MPC could withstand similar disturbances to the whole-body MPC for a
specified standing position, it was observed to have only a marginal ability to reject
disturbances during dynamic motions like stepping in place and walking, no matter
the horizon length. This is likely attributable to the fact that the AMBER-3M
platform has approximately 40% of its mass in the legs, and confirms the need for
whole-body online planning methods, especially for robots like AMBER-3M which
have a non-negligible mass distribution concentrated in the legs.

Next, note that the MPC approach fails quickly when no terminal cost is present.
When a heuristic terminal component is added, the robustness of the system dra-
matically increases. Furthermore, when the proposed MPC approach is combined
with an HZD-based reference trajectory for running and terminal costs, the horizon
length can be shortened to as low as 0.2 seconds, which drastically reduces the
computational complexity. This could be essential to enable the whole body NMPC
approach to be applied to a 3D biped with a larger number of degrees of freedom.
These results emphasize the importance of the careful design of reference compo-
nents, as their construction is tightly coupled with the performance of the overall
system. Finally, it is important to note that at a disturbance of 22N during walking
the foot begins to slip, causing all of the MPC based methods to fail. The HZD
with PD method exhibits more robustness to foot slipping and is therefore able to
endure larger disturbances, as it does not model the disturbances. Note that the HZD
and PD method is limited to periodic motions, and during disturbance rejection it
heavily restricts the allowable stepping range, as reported in Table 5.2. On the other
hand, the MPC methods naturally have a large variability in footstep locations in

Table 5.2: Maximum disturbance rejection and step adaption range (difference be-
tween smallest and largest observed step length). MPC planning frequency clamped
at 100 Hz.

Disturbance Rejection Step Range
Horizon Length 2 s 0.5 s 0.2 s 2 s
Lumped Mass MPC 2 N - - -
MPC + No Terminal 22 N - - 0.63 m
MPC + Heuristic 22 N 22 N - 0.67 m
MPC + HZD 22 N 22 N 20 N 1.10 m
HZD + PD 30 N 0.14 m

108

Figure 5.7: Simulation results for the MPC on AMBER with Heuristic Terminal
controller under a disturbance of 20N applied in the forward (X) direction during
the marked time of 1s, including states (top), torques (middle), and contact forces
(bottom). The commanded forward walking velocity is 0.5m/s.

order to stabilize the system. We believe that the ability to modulate step width and
exhibit aperiodic motions will be critical for bipedal robots operating on real-world
terrain.

As seen in the supplementary video [167], the various proposed approaches react
differently to disturbances. Specifically, the phase-based HZD with PD control
achieves stability via implicit modification of the contact times, where the limbs

109

Figure 5.8: Gait tiles and joint angle trajectories for forward walking behavior of
the whole body MPC at a horizon length of 1 second (top, left), and the whole body
MPC+HZD at a horizon length of 0.5 seconds (bottom, right). The HZD reference
induces stronger periodic behaviors in the joint coordinates, correlated with the
periodic nature of an HZD gait.

are accelerated along the predefined reference trajectory. While this allows for
significant disturbance rejection, it leads to the inputs being saturated for non-
negligible amounts of time. On the other hand, in this MPC-based formulation,
stability is achieved via explicit modification of the footstep locations, and is able
to converge back to the desired reference trajectory in one to two steps while still
satisfying state and input constraints. A depiction of the disturbance rejection
behavior of the MPC method can be seen in Fig. 5.7.

The MPC with a heuristic reference trajectory and a horizon length of 1.0 second,
and the MPC with an HZD trajectory and a horizon length of 0.5 seconds were
then deployed on the AMBER hardware. As seen in Fig. 5.8, both methods produce
forward walking and have a visually distinct gait. We see in the joint angle trajectory
data that the MPC with HZD method displays strong periodic behavior, similar to
periodic motions expected with an HZD approach.

110

5.3 Model Predictive Control on Manifolds
A key challenge in applying MPC to floating-base legged robots is that their config-
uration space is not Euclidean. In the previous section, we were able to ignore this
complexity by planning over Euler angles, which are a convenient parameterization
as long as the robot remains away from the singularity. In this section, we explicitly
operate on the underlying manifold structure to avoid these singularities, and address
the question:

Question: How do we perform optimal control when the states are
manifold valued?

In particular, the robot’s orientation evolves on the manifold S3, requiring special
care in defining both the system dynamics and the optimization variables. Directly
including quaternion or rotation matrix representations in an MPC formulation
introduces nonlinearities that can make the problem intractable in real time, and
conversely ignoring the underlying manifold constraint can produce trajectories that
are not dynamically feasible.

To address this, we introduce a change of coordinates that lifts the orientation
dynamics into the Lie algebra s3 — a vector space — enabling locally linear approx-
imations using Taylor approximations to be preformed. This representation allows
us to formulate a convex quadratic program for trajectory optimization over short
horizons, while still respecting the underlying manifold structure.

Linearized Dynamics
There are a number of potential options to produce solutions for the orientation
variable q ∈ S3. The first option is to take the continuous time dynamics as in
Section 2.1:

q̇ = qω,

and linearize them directly in the ambient space R4. Once these dynamics have
been integrated, the solution q(t) could be renormalized to bring it back to the
constraint surface S3. Depending on the integration time, however, this will likely
cause extremely poor dynamics approximations as a significant portion of the path
length will be lost to the projection operation.

For the next option, recall from Section 2.1 that a Lie Euler step over a time
discretization h is of the form:

qk+1 = qk exp(ωkh). (5.16)

111

Figure 5.9: A depiction of Lie groups, Lie algebras, and the log operation. a) The
trajectory qk, b) pulling the trajectory back to the identity element via q−1

0 , and c)
taking the log map near identity to obtain elements in the Lie algebra.

These dynamics could be linearized directly whereby producing perturbation vectors
in the tangent space at qk would yield trajectories which satisfy the underlying
manifold structure. Unfortunately, the exp operation is complex, and its linearization
can be difficult.

For the final option, the one used for the remainder of this section, in order to avoid
the nonlinearity present in (5.16), we propose the following change of coordinates:

ξk = log(q−1
0 qk), (5.17)

which first pulls the variables back to the vicinity of the identity element qε, and
then to the Lie algebra as shown in Figure 5.9. Substituting in the Lie-Euler step
from (2.10) into the above expression for the first few values of k, we have:

ξ0 = 0

ξ1 = log(q−1
0 q1) = log(q−1

0 q0 exp(ω0h))

= ω0h

ξ2 = log(q−1
0 q2) = log(q−1

0 q1 exp(ω1h))

= log(q−1
0 q0 exp(ω0h) exp(ω1h))

= ω0h + ω1h + 1
2[ω0h,ω1h] + O(h3)

where [·, ·] represents the Lie bracket, the last line follows from the Campbell-Baker-
Hausdorff theorem [168], and the higher order terms consist of linear combinations
of iterated Lie brackets, which due to linearity are multiplied by terms of h3 or
higher1. This means that, neglecting terms of O(h2) or higher, we are able to write
our dynamics update law as:

ξk+1 =
k∑

i=0
ωkh = ξk + ωkh,

1If quaternion multiplication commuted, then the iterated Lie brackets would be zero — but alas,
no such pleasantries exist.

112

which is linear and will therefore be straightforward to include in the MPC program.

The next challenge concerns the construction of local approximations of the accel-
eration dynamics. As most of the coordinates lie in Euclidean space and therefore
have straightforward Taylor approximations, we will limit our attention on the man-
ifold valued variables. Specifically, in a continuous domain v consider a function
f : S3 × s3 × Rm → s3 satisfying:

ω̇ = f(q,ω, u).

Given a perturbation η ∈ s3, a local representation of f in exponential coordinates
f̃ : S3 × s3 × Rm × s3 → R3 can be defined as:

f̃(q,ω, u,η) ≜ f(q exp(η),ω, u).

Given q ∈ S3, ω ∈ s3, and u ∈ Rm, as well as additional perturbations ∆ω ∈ R3

and ∆u ∈ Rm, we can compute a Taylor expansion of f̃ about the point (q,ω, u, 0)
at a perturbed point (q,ω + ∆ω, u + ∆u,η) via:

f(q exp(η),ω + ∆ω, u + ∆u)

≈ f(q,ω, u) + ∂f̃

∂η
· η + ∂f

∂ω
·∆ω + ∂f

∂u
·∆u.

Then, we can write the continuous-time linearized dynamics of ω about the point
(q,ω, u) as:

d
dtδω = ∂f̃

∂η
(q,ω, u, 0) · η + ∂f

∂ω
· δω + ∂f

∂u
· δu. (5.18)

Next, we consider the dynamics of the variables ξk around a reference trajectory
q̄k ∈ S3, ω̄k ∈ s3, and ūk ∈ Rm. Define ξ̄k = log(q̄−1

0 q̄k) with ξ̄0 = 0 and suppose
the reference trajectory satisfies the Lie-Euler step, i.e.:

ξ̄k+1 = ξ̄k + ω̄kh.

For a trajectory ξk ∈ s3 similarly satisfying the Lie-Euler step, and vectors ωk ∈ s3,
and uk ∈ Rm, we have:

(ξk+1 − ξ̄k+1) = (ξk − ξ̄k) + (ωk − ω̄k)h + ξ̄k + ω̄kh− ξ̄k+1︸ ︷︷ ︸
=0

,

yielding continuous-time linearized dynamics:

d
dtδξ = δω. (5.19)

113

Combining expressions (5.18) and (5.19), we obtain:

d
dt

δξ

δω

 =
 0 I

∂f̃
∂η

(q,ω, u, 0) ∂f
∂ω


︸ ︷︷ ︸

A

δξ

δω

+
 0

∂f
∂u


︸ ︷︷ ︸

B

δu. (5.20)

We can similarly construct local approximations of the impact maps. On an edge e,
consider a function ∆ : S → s3 which satisfies:

ω+ = ∆(q−,ω−). (5.21)

Here, S represents the guard as a submanifold of S3×s3 (though the guard is actually
a submanifold of Q). As defined, this reset map is the restriction of the momentum
transfer of the system at impact to the guard. Therefore, we can naturally extend
the domain of the reset map by considering the same momentum transfer applied
anywhere in the state space, yielding ∆ext : S3 × s3 → s3. This is needed because
in our Taylor expansion of the discrete dynamics, we consider perturbations of the
full system state (not just perturbations tangent to the guard)2. As before, we can
locally approximate the function ∆ext via:

∆ext(q− exp(η),ω− + ∆ω−) ≈ ∆ext(q−,ω−)

+ ∂∆̃ext

∂η
(q−,ω−, 0) · η + ∂∆ext

∂ω− ·∆ω
−,

where again we can represent ∆ext locally as:

∆̃ext(q−,ω−,η) ≜ ∆ext(q− exp(η),ω−).

Noting that the q+ = q−, we can represent the linearization of the discrete map as:δξ+

δω+

 =
 I 0

∂∆̃ext
∂η

(q−,ω−, 0) ∂∆ext
∂ω−


︸ ︷︷ ︸

D

δξ−

δω−

 . (5.22)

Geometric Model Predictive Control for ARCHER
This section represents the planning layer of the level, as shown in Figure 5.10. High
level target base positions pref ∈ R3 are provided by the user, and MPC produces
reference trajectories to pass to the low layer. This architecture maintains the benefit

2This extension allows us to abscond from having to only consider perturbations along the guard,
which is an interesting area of future work.

114

Figure 5.10: The multi-rate architecture employed for the robot.

of having a horizon and is paired with a low layer feedback controller which adds
robustness to model error and delays induced by computation time.

The configuration of the hopping robot is given by q = (p, q,θ, ℓ) ∈ Q, where
p ∈ R3 is the Cartesian position, q ∈ S3 is the unit quaternion representing the
orientation, θ ∈ R3 represents the flywheel angles, and ℓ ∈ R is the foot deflection.
Next, let v = (ṗ,ω, θ̇, ℓ̇) ∈ V ≜ R3 × s3 × R3 × R, where ω ∈ s3 is a purely
imaginary quaternion representing the angular rate of the body.

For a given MPC horizon N ∈ N, we begin by constructing a vertex sequence vk ∈ V

for k = 0, . . . , N − 1 describing the continuous modes that the robot will be in at
various points along the horizon. These are defined a priori by estimating the time
to impact of the robot. We also construct a sequence of ek = vk → vk+1 ∈ E ∪{0},
where ek = 0 if no discrete transition is expected. Consider a discrete (manifold
valued) state trajectory x̄k and input trajectory ūk. We introduce the variables:

z̄k = (p̄k, ξ̄k, θ̄k, ℓ̄k, v̄k) ∈ R20,

with ξ̄k defined as in (5.17), and whereby zk will represent our decision variables in
the MPC program. At each index k, compute the linearizations of the dynamics in
the vertex vk:

żk = Avk
zk + Bvk

uk

+ fvk
(x̄k, ūk)−Avk

z̄k −Bvk
ūk︸ ︷︷ ︸

≜Cvk

, (5.23)

where the qk andωk elements are linearized as in (5.20), the Euclidean elements are
linearized in the standard way. From (5.23), we can produce a discrete-time linear

115

system over a time interval h ∈ R>0 by taking an Euler step (in Euclidean space),
or by using the matrix exponential in R20×20 to produce the discrete time dynamics:

zk+1 = Ad
vk

zk + Bd
vk

uk + Cd
vk

, (5.24)

z+
k = Dek

z−
k + ∆ek

(x̄−
k)−Dek

z̄k︸ ︷︷ ︸
≜Eek

. (5.25)

We now introduce the finite-time optimal control problem (FTOCP), i.e., the geo-
metric model predictive controller:

minuk,zk

N−1∑
k=0

(zk − zref)⊤Q(zk − zref) + u⊤
k Ruk + z⊤

NVzN

s.t. zk+1 = Ad
vk

zk + Bd
vk

uk + Cd
vk

, if ek = 0 (5.26a)

zk+1 = Dek
zk + Eek

, if ek ̸= 0 (5.26b)

z0 = z(t), ξ0 = 0 (5.26c)

uk ∈ U (5.26d)

where Q ∈ S2n
>0 and R ∈ S2n

>0 are symmetric, positive definite state and input gain
matrices, respectively, V ∈ S2n

>0 is a quadratic approximation of the cost-to-go, U
is an input constraint set, and where the initial condition ξ0 = 0 is enforced. The
above optimal control problem is solved in an SQP fashion, where the solution from
the previous iteration is used to produce the linearizations for the next. Specifically,
we can take (z̄k, ūk) = (z∗

k, u∗
k) where the asterisk indicates the optimal solution,

and x̄k can be produced from z̄k via inverting (5.17).

Quaternionic Feedback
Once MPC produces a solution, a desired trajectory and feedforward input can be
produced as:

qd(τ) = q̄0 exp(ξ∗
1), ωd(τ) = ω∗

1, uff(τ) = u∗
0,

for τ ∈ [0, dt) ⊂ R. An interesting area of future work is using the MPC signals
to produce dynamically admissible trajectories in the inter-MPC times, but this was
not explored due to WiFi communication bandwidth limitations. The FTOCP is
implemented in a receding horizon fashion, where the low layer controller only ever
receives the first control input and desired trajectory.

Given the measured quaternion qa, measured angular rate ωa, desired quaternion
qd, and desired angular rate ωd of the robot, we can construct our actuation as:

u(x, t) = −KpIm(qd(t)−1qa)−Kd(ωa − ωd(t)) + uff(t),

116

where Kp, Kd ∈ S3
>0 are positive definite gain matrices. The product qd(t)−1qa

represents a “difference” between elements of S3; if qa is in a small neighborhood
of qd, then the product is in a small neighborhood of the identity element qE . The
map Im : S3 → s3 takes the purely imaginary component of the error signal, and
can be viewed as the Euclidean projection of the Lie group onto the Lie algebra,
allowing us to base the control input over a vector valued error. Alternatively, the
log operation could be used instead of Im, but the Im operator was empirically found
to work more reliably.

Implementation and Results
Hardware
The MPC program runs at 100 Hz on an Ubuntu 20.04 machine with AMD Ryzen
5950x @ 3.4 GHz and 64 Gb RAM and communicates over WiFi at 100 Hz via an
ESP module to the onboard Teensy microcontrollers running the low level feedback
control. The Pinocchio C++ library [157] is used, specifically the pinocchio3
preview branch, to produce fast evaluation of the system dynamics (constrained,
unconstrained, continuous, and discrete), as well as their associated Jacobians, and
the manif C++ library [169] is used to handle all Lie group operations (such as log
and exp). As seen in Figure 5.11 as well as the supplemental video [170], the robot
was successfully able to hop stably in place, demonstrating the first instance of 3D
hopping using online motion planning.

Simulation
In order to thoroughly test the method, the torque limits of the robot were increased in
a Mujoco [171] simulation environment from 1.5 Nm to 15 Nm. First, the tracking of
various global reference signals, including a square and a Lissajous trajectory, were
evaluated as seen in Figure 5.12. Note the constant global velocity in the flight phase
due to the lack of control inputs when the robot is in the air. As such, the robot must
carefully plan its interactions with the ground in order to track the desired reference
signals. Specifically, it is interesting to see how MPC is implicitly able to control
the actuated coordinates of the robot in order to stabilize the underactuated ones.
Also note the discontinuities in the MPC planned trajectories around the impact
events due to the hybrid nature of the system dynamics. Next, disturbance rejection
and more dynamic maneuvers like flipping were tested on the system, as seen in
the accompanying video [170] and Figure 5.13. Due to the geometrically consistent
structure of the planning algorithm, the robot is able to explore a variety of states on

117

Figure 5.11: The planned elements q ∈ S3 and ω ∈ s3, as well as the low level
feedback controller. The multi-rate nature of the methodology can be seen in the
difference of time scales between when MPC produces trajectories and when the
low level controller updates.

its orientation manifold, and exhibits exceptional robustness to disturbances. Note
that the torque limitations, but not limitations of the methodology, prohibit such
demonstrations on the hardware platform.

Implementation Details
The complete list of parameters used in the MPC program are detailed in Table 5.3.
There is an inherent trade-off between tracking global position and maintaining a

118

Figure 5.12: Trajectory tracking on ARCHER. (Above) Positions and velocities of
the robot tracking a global reference setpoint in simulation using geometric MPC.
Note the planning through hybrid events and constant velocity in flight phase due to
underactuation. (Below) Two reference trajectories.

vertical orientation — as such the associated gains need to be appropriately tuned.
To avoid adding a nonlinear and mixed integer constraint in to the optimization
program, the impact time was calculated as though the hopper was exactly vertical
via solving for the ballistic trajectory in the z-direction. As the spring dynamics add
significant stiffness to the optimization problem, the foot torque was set to zero in
the optimizer, and instead the MPC program plans as though it is a passive degree of

119

Figure 5.13: Dynamic motions explored in simulation using geometric MPC, in-
cluding flipping (above) and disturbance rejection (below).

freedom. Instead, the low level controller runs its own feedback controller to regulate
foot compression between impact events. As the dynamics of the ground phase are
more challenging than the flight phase, the system was discretized more finely in that
domain. This means that the look-ahead time shrank whenever impact came into
view in the horizon, as the horizon length was kept constant. We found that using the
matrix exponential instead of the Euclidean Euler step aided in performance, likely
due to the reduced one step prediction error. Finally, the quadratic approximation of
the cost to go was simply taken to be Q. The complete code can be found at [172].

5.4 Learning Walking Behaviors by Enforcing Set Invariance
In the previous chapter, we enforced set invariance for staying on a stepping stone
while tracking a predefined walking gait, which we have discussed how to generate
in this chapter. In this section, we drop the notion of a predefined gait and ask the
question:

Question: Can walking behaviors be generated simply by enforcing
set invariance?

This perspective is termed Neural Gaits, and is depicted in Figure 5.14. To answer

Table 5.3: MPC parameters

Horizon Length 20 SQP Iterations 2
p Weight 10 v Weight 1
q Weight 10 ω Weight 0.01
u Weight 0.001 umax 1.5 Nm
Kp Roll/Pitch Gain 120 Kd Roll/Pitch Gain 4
Kp Yaw Gain 15 Kd Yaw Gain 1
dtflight 0.01 dtground 0.001

120

this question, denote a parameter in a parameter space θ ∈ Θ, whereby we can
define a collection of k outputs y : X ×Θ→ Rk parameterized by θ that we would
like to converge to zero as:

y(x;θ) = ya(x)− yd(x;θ), (5.27)

where ya : X → Rk are the measured outputs, and yd : X×Θ→ Rk are the desired
outputs. We take the outputs to be joint angles, and θ to be the parameters of a
neural network. Next, fix a controller structure u(x;θ), which is parameterized by θ
through the definition of y(x;θ). The neural gaits method relies on the assumption
that good walking can be characterized as a forward invariant set. Thus, the first
step of the method requires us to define a set of barrier functions that imply good
walking. In the following discussion, we will only consider barrier functions defined
on the zero dynamics surface, i.e., h : Z → R as defined when the error coordinates
are zero (η = 0). Importantly, the guarantees made on Z ⊂ X have relevance to
the full state space, as is made precise in Section 5.4.

After constructing a collection of barrier functions, we train a policy yd that ensures
the system stays safe by minimizing the violation of the barrier function conditions
over regions of the state space. The resulting policy renders the intersection of the
safe set for all barriers forward invariant. Finally, to mitigate model mismatch, we
train a residual term ε(z) on the zero dynamics. These corrected zero dynamics
are then used to refine the existing policy episodically until the desired walking
performance is achieved.

Learning the Policy yd

This learning approach builds upon and unifies two lines of work. The first studies
how to characterize good walking behavior as set invariance via a collection of
barrier function candidates [173]. The second studies how to train neural ODEs
to satisfy control-theoretic properties such as Lyapunov stability [174], which we
extend to the barrier setting.

Recall from Section 2.4 that the error and zero dynamics coordinates are computed
from the states using the diffeomorphism Φ, which only depends on the policy
through Φη. We thus parameterize the policy as a function of the projection of the
state onto the zero dynamics manifold and parametersθ, i.e., yd(x) = yd(Φz(x);θ).
In other words, yd only depends on the unactuated degrees of freedom of the system
rather than the full state. Therefore, when there is no error (i.e., η = 0) we have that
z ∈ Z with dynamics ż = ω(0, z;θ). Note, importantly, that even when the error

121

Figure 5.14: A depiction of the Neural Gaits framework. (Left) Designing barrier
function candidates that we use to formally describe walking. (Middle) Training
a policy capable of satisfying all the barrier condition in the zero dynamics state
space where the constraint is enforced. (Right) Collecting hardware data to train
a residual zero dynamics model. We then refine the policy episodically using the
augmented model.

coordinates are zero, the zero dynamics are still a function of yd and therefore θ.
This implies that the zero dynamics are influenced by the parameters of the policy
even though the control inputs are not present in ω.

Learning to Satisfy Barrier Conditions. Taking inspiration from [175] and
[173], we assume that walking can be characterized as set invariance via a col-
lection of barrier function candidatesH = {hi}N

i=1 (see Table 5.4 discussed later in
Section 5.4). To each hi, we associate a region at risk S i ⊆ Z where the barrier
function is enforced. We define a set of neural network parameters that render the
region at risk safe under the barrier definition:

Θi = {θ ∈ Θ : ∀z∈Si
ḣi(z;θ) ≥ −α(hi(z;θ))}. (5.28)

In other words, each Θi corresponds to the set of policy parameters that render the
set S i safe.

Thus, our learning problem is equivalent to finding a set of parameters θ ∈ ⋂N
i=1 Θi

that render the system safe in all regions at risk. Similar to the Lyapunov Loss
studied in [174], we introduce the concept of Barrier Loss as a learning signal for
training.

122

Definition 5.1 (Barrier Loss). For a set of barrier function candidatesH = {hi}N
i=1

and corresponding regions at risk S i ⊂ Z on the zero dynamics, a Barrier Loss,
L : Θ→ R≥0, is defined as:

L(θ) =
N∑

i=1

∫
Si

max{0,−ḣi(z;θ)− α(hi(z;θ))}dz. (5.29)

When a choice of parameters θ achieves zero Barrier Loss, then the safety of the
zero dynamics is guaranteed by satisfying the forward invariance condition of the
barrier functions:

Theorem 5.2 (Zero Barrier Loss Implies Safety of Zero Dynamics). The zero
dynamics is guaranteed to be safe in all its regions at risk if and only if we find a θ∗

that attains L(θ∗) = 0.

Proof. Notice that for all i ∈ {1 . . . N} both ḣi and α ◦hi are continuous functions.
This implies that for all z ∈ Z and θ ∈ Θ, max{0,−ḣi(z;θ) − α(hi(z;θ))} is
a continuous non-negative real function. It is well known that a continuous non-
negative real function will have zero integral if and only if it is the zero function.
We specialize this statement for the terms in our loss as follows:

∀z∈Si
max{0,−ḣi(z;θ)− α(hi(z;θ))} = 0

⇔
∫

Si

max{0,−ḣi(z;θ)− α(hi(z;θ))}dz = 0. (5.30)

It is clear that the sum in L(θ) will be zero if an only if each integral term is zero
since each integral is a non-negative function. Thus we can conclude thatL(θ∗) = 0
if and only if

∀i∈{1...N},z∈Si
max{0,−ḣi(z;θ∗)− α(hi(z;θ∗))} = 0.

For any barrier hi and z ∈ Z you can see that max{0,−ḣi(z;θ∗)−α(hi(z;θ∗))} = 0
implies that:

−ḣi(z;θ∗)− α(hi(z;θ∗)) ≤ 0 =⇒ ḣi(z;θ∗) ≥ −α(hi(z;θ∗)),

i.e., the safety condition for the barrier is satisfied.

123

Instantiation for Bipedal Walking
Table 5.4 describes the barrier functions used in our experiments, which take inspi-
ration from [173]. We depict some of these conditions on the robot in Figure 5.15a.
As all barrier functions hi : X → R are enforced on the zero dynamics surface,
we will write them implicitly as hi ◦ Φ−1(0, · ;θ) : Z → R for i ∈ {1 . . . N}
with N = 5 in this instantiation. In Table 5.4, tA represents the torso angle, and px

and pz represent the x and z position of the swing foot, respectively. In addition to
continuous time conditions, various conditions needed to be enforced on the guard,
namely enforcing the location of the guard, symmetry of the model before and after
impact, and a guard mapping condition. Interestingly, although these barriers would
be relative degree two on the full state dynamics, they are directly enforceable as
relative degree one barriers on the zero dynamics. This can be seen by treating yd

as the input to the zero dynamics, and observing that the zero dynamics themselves
are functions of yd.

Note that these barrier functions h are defined over the space Z , as, given a policy
yd(· ;θ) : Z → R4, the mapping Φ−1 : N ×Z → X is uniquely defined. We take
inspiration from reduced order models, and specifically the notion of orbital energy
[176] to define a set ZO ⊂ Z with reasonably bounded orbital energies as our first
region at risk. We also define the set Sϵ ⊂ ZO which contains the part of the guard
in ZO as well as a small region around it where discrete-time guard conditions are
enforced. We learn policies that satisfy the barrier conditions on these regions of
the zero dynamics by penalizing the violation of the constraints shown in Table 5.4.
Notice that penalizing guard constraints over a region results in policies that are
robust to impact modeling error since the policy must be prepared to change stance
foot at any point in Sϵ rather than just the guard S.

Torso Angle {z ∈ ZO} − π
10 ≤ θt(z) ≤ 0.05

Swing Foot Clearance {z ∈ ZO} 0 ≤ (px(z)− cx)2 + (pz(z)− cz)2 − r2 ≤ 0.3
Impact Mapping {z ∈ Sϵ} −0.15 ≤ ∆(z) + z ≤ 0.15

Symmetry {z ∈ Sϵ} y(z) = y(∆(z))
Foot on Guard {z ∈ Sϵ} pz(z) = 0

Table 5.4: Barrier functions used to characterize bipedal walking, and the associated
regions at risk in which they are enforced. The first two are enforced over the
continuous dynamics, and the bottom three in a buffered region of the guard. The
strict equality on symmetry and the foot on guard conditions were also enforced as
a training loss.

124

Figure 5.15: Barrier functions and output stability. a) A depiction of the barrier
functions used to enforce walking as set invariance. On the left are the two contin-
uous time barrier conditions, and on the right the three barrier conditions enforced
at the guard. The red dot on the foot indicates the stance foot, and b) The safe set
on the zero dynamics CZ , as certified by the proposed learning method, and the
combined safe set Cσ, and described in Theorem 5.

Learning Optimization Details
Evaluating the Barrier Loss in Equation (5.29) requires solving an integral that is
in general intractable. Instead, we use Monte Carlo sampling to approximate the
integral. Since our approach follows Algorithm 1 of [174] we refer to it for more
details while noting that we optimize for the Barrier Loss rather than the Lyapunov
Loss. A key ingredient in the Monte Carlo sampling approach in [174] is defining
a compact support set to sample from (i.e., where the barrier condition should be
satisfied). In our work this compact support set directly corresponds to the region
at risk for each barrier condition.

Learning the Residual Zero Dynamics ε(z)
As outlined in Figure 5.14, we can improve upon the nominal zero dynamics model
by collecting trajectories of the robot executing the resulting policy in hardware. We
can then use those trajectories to learn a residual error term on the zero dynamics
ˆ̇z = ω(0, z;θ) + ε(z) where ε is the learned residual term. We model this residual
term using Neural ODEs [177], which are naturally compatible with our policy
learning approach. We can iterate this process multiple times, alternating between
learning θ and ε until the resulting policy achieves the desired behavior.

Providing Guarantees in the Full State Space
Assuming a controller which exponentially converges the outputs y(x), for example
a feedback linearizing or control Lyapunov function based controller, the converse
Lyapunov theorem allows us to construct a Lyapunov function Vη : N → R verifying
the exponential convergence of the outputs. Along with a certificate of safety

125

Figure 5.16: Gait tiles of the neural network encoding the final trained policy running
in real time on the AMBER-3M robot. For a video discussing the methodology and
summarizing the hardware results, please refer to [178].

hZ : Z → R on the zero dynamics space, we can construct a set in the combined
spaceN ×Z which is safe, and has a barrier function certificate. This is described
in the following theorem.

Theorem 5.3. Let Vη = η⊤Pη : N → R be an exponential control Lyapunov
function for the output dynamics with V̇η ≤ −γVη and hZ : Z → R be a barrier
function on the zero dynamics with safe set CZ . Then, there exists a constant σ ≥ 0
and c ≥ 0 such that if ḣZ(z) ≥ −αhZ(z) + c with α ≤ γ

2 , the barrier function
h(η, z) = hZ(z)− σVη(η) is safe with set Cσ.

Proof. First note that the derivative of the function is given by:

ḣ = ∂hZ

∂z
(z)w(η, z)− σV̇η(η)

≥ −αhZ(z) + c−
∣∣∣∣∣∂hZ

∂z
(z) (w(η, z)−w(0, z))

∣∣∣∣∣+ σγVη(η)

≥ −αh(η, z) + c− LhZ
Lωη∥η∥2 + σγ

2 λmin(P)∥η∥2
2, (5.31)

where the third line follows from Cauchy Schwartz, the fact that hZ and ω(η, z)
are locally Lipschitz with Lipschitz constants LhZ

and Lωη , respectively, converse
Lyapunov, and the assumption that α ≤ γ

2 . Taking β1 = LhZ
Lωη , and β2 =

γ
2 λmin(P), we observe that−β1∥η∥2 + σβ2∥η∥2

2 ≥ −
β2

2
4σβ3

≜ c. By taking c defined
as such, we achieve the desired result.

The above theorem motivates the perspective of this work: satisfying barrier function
certificates in the zero dynamics enables reasoning about safe sets in the complete
state space. Note that the hybrid case is not addressed here, and is an interesting
direction for future theoretical work.

126

Simulation and Experimental Results
The hardware platform used in this work was the planar underactuated biped
AMBER-3M, which has actuators on the hips and knees, and point contact feet.
Both in simulation, where the RaiSim [179] environment was used, and on hard-
ware, the pipeline went as follows: the zero dynamics coordinate z was estimated,
the Neural Network policy yd(z;θ) was evaluated, and the desired output values
were passed to a PD controller running at 1kHz. The policy yd(z;θ) was randomly
initialized and was trained for 1000 epochs. The AdamW optimizer was used in
PyTorch [180] with an initial learning rate of 10−2, weight decay of 10−4, with a
learning rate decay schedule at epochs 100, 400, and 800. Initially, the “gait” had
the robots leg flailing randomly in the air, and when integrated resulted in the robot
falling over. Once the loss converged, the policy had a loss in the order of 5× 10−3,
and was able to walk stably in the simulation. The neural network ran in closed
loop on the hardware platform and was called at approximately 500 Hz to produce
desired outputs for the system to track. Unlike simulation, once tested on hardware,
the policy resulted in the robot stumbling forward, unable to walk without falling.
Data was collected over various trials, after which the methodology proposed in
Section 5.4 was used to learn the residual of the model uncertainty, as projected to
the zero dynamics space. During this process, Adam and other SGD methods were
numerically unstable even with gradient clipping, so Nero [181] was used instead.

Once a residual term was learned, a new policy yd(z,θ) was trained with the
updated dynamics (warm started with the policy from the previous iteration). After
convergence, the gait was again tried on hardware. The gait was significantly more
stable, and able to walk without assistance; however, the gait was not robust to
walking speeds. Therefore, the process was repeated, and again a new policy was
learned. When testing that policy, the robot was able to walk on its own, and was
robust to different walking speeds. A sample gait is shown on Figure 5.16. The
complete code can be found here [182].

5.5 Zero Dynamics Policies
In the last two sections, we have developed a powerful and constructive method
for stabilizing underactuated systems. What we have not yet used, however, is
the beautiful mathematical construction of zero dynamics that we developed in
Section 2.4. Therefore, the focus of this section will be to address the following
question:

127

Figure 5.17: Experiments run with Zero Dynamics Policies: a) treadmill hopping
with disturbances up to 1 mile per hour, b) 1.5” stair climbing and 20° ramp
descending, c) disturbance rejection, and d) hopping across a 2x4.

Question: Can we leverage the zero dynamics decomposition in the
paradigm of optimal control, and if so, wat are the benefits?

In this section, we attempt to answer this question, and in doing so provide a means
of imitation learning optimal control on the zero dynamics manifold, a method
we term Zero Dynamics Policies (ZDP). For the diligent and thorough reader, this
section is the best section of the entire thesis, and the result I am proudest of.

https://vimeo.com/923800815?share=copy

128

From Hybrid Dynamics to Discrete-Time Dynamics
The starting point for our discussion is the hybrid dynamical section from Sec-
tion 2.3:

H =

ẋ = f(x) + g(x)u x /∈ S

x+ = ∆(x−) x− ∈ S
(5.32)

where S ⊂ X is a guard that defines when the robot impacts the ground. We will
be interested in modeling the hybrid system H as a discrete-time dynamical system
via its impact-to-impact dynamics. To this end, let xk ∈ X denote the robot state
just before impact, P denote an admissible parameter set for vk ∈ P , a discrete
parameterization of the control input over a single continuous phase, and tk ∈ R≥0

be the duration of the continuous phase. We reformulate our hybrid control system
into discrete dynamics via:

xk+1 = F(xk; vk) ≜ φ(tk, ∆(xk); vk). (5.33)

where F : X × P → X composes the impact map with the flow of the continuous
system under a parameterized feedback controller u = k(x(t), vk) ∈ K. In the
context of hopping, we take vk to be the desired impact angle. This parameterization
of control input allows us to reason about the effect of impact conditions on the
resulting system dynamics, which are the primary means of stabilizing legged
systems. We assume that F is well defined (which implicitly requires a lower
bound on the time between impacts) and that the origin is an unactuated equilibrium
position, i.e., that F(0; 0) = 0. For a complete discussion of how to achieve this
representation from the underlying hybrid dynamics, see [183].

Outputs and Zero Dynamics
Understanding the structure of underactuation provides key insight into constructing
stabilizing controllers for these systems. To analyze the states that actuation directly
impacts, consider the following coordinate change from Section 2.4:

η = Φη(x) ≜
B⊤q
B⊤q̇

 , z = Φz(x) ≜
 Nq
ND(q)q̇

 (5.34)

for η ∈ N ⊂ X and z ∈ Z ⊂ X , where N ∈ R(n−m)×n is chosen to be a basis for
the left nullspace of B. As seen in Section 2.4, we know Φ(x) ≜ (Φη(x), Φz(x)) is
a diffeomorphism betweenX andN ×Z; therefore, Φ−1 exists and any conclusions

129

of stability of (η, z) are directly transferable back to x. In these coordinates, the
hybrid dynamics are given by:

N =



η̇ = f̂(η, z) + ĝ(η, z)u
ż = ω(η, z)

Φ−1(η, z) /∈ S

η+ = ∆η(η−, z−)
z+ = ∆z(η−, z−)

Φ−1(η, z) ∈ S
(5.35)

termed the actuated dynamics and the unactuated dynamics, respectively. Note that
these coordinates were exactly chosen such that ĝ(η, z) is full rank and dz

dxg(x) ≡ 0;
as such, this mapping decomposes the state space into coordinates which can directly
be controlled, and those which cannot.

Assuming the continuous time input does not effect the impact map or impact time3,
applying Φ to the discrete dynamics (5.33) results in:

ηk+1 = F̂(ηk, zk, vk), zk+1 = Ω(ηk, zk). (5.36)

Now, consider a mapping ψ : Z → N and associated discrete-time error ek =
ηk − ψ(zk). The goal will be to design ψ such that driving ek to zero results in
stability of the overall system. This choice of error parameterization is inspired by
other successful results in robotics; the Raibert Heuristic [36], reduced order models
[184], and regulators for HZD gaits [185] all reason about where to place a robot’s
feet (the actuated state) as a function of their center of mass state (the underactuated
state). We aim to generalize these methods and reason explicitly about constructive
methods to generate provably stable behaviors. The construction of the mapping ψ
induces an associated manifoldMψ ⊂ X via:

Mψ ≜ {(ηk, zk) | ηk = ψ(zk)}. (5.37)

Paralleling the continuous time notion of controlled invariance in Section 2.1, we
will be interested in enforcing conditions such that Mψ is discretely controlled
invariant, defined as:

Definition 5.4. The manifoldMψ is controlled invariant if for all (ηk, zk) ∈ Mψ

there exists a vk ∈ P such that the next state remains on the manifold, i.e.:(
F(ηk, zk, vk), Ω(ηk, zk)

)
∈Mψ.

3This assumption is needed so that Ω is not a function of vk and is well justified on ARCHER
as impact angle weakly effects impact time.

130

Assuming a controlled invariant manifoldMψ, we now have the notion of discrete-
time zero dynamics:

Definition 5.5. The discrete-time zero dynamics associated with a controlled invari-
ant manifoldMψ are given by:

zk+1 = Ω(ψ(zk), zk).

These dynamics are autonomous but determined by choice of ψ; therefore, the goal
of this work will be to design ψ such that the zero dynamics are stable.

Discrete-Time Zero Dynamics Policies
We propose a discrete-time mapping from the underactuated state, zk, to a desired
actuated state, ηk. This mapping, ψ : Z → N , will encode the desired position of
the actuated coordinates given the location of the unactuated coordinates at impact.
The job of the continuous time controller is to drive η(t) to the desired pre-impact
location, ψ(zk+1).

In this section, we will first reason about the ability of continuous time controllers
to render Mψ attractive and invariant by driving the error e to zero. Second,
we demonstrate that if the manifold has stable zero dynamics (trajectories on the
manifold converge to the origin), then stabilizing the manifold stabilizes the entire
system. Finally, we propose a learning pipeline which leverages optimal control to
find a manifold with the desired properties.

Constructive Stabilization of the Zeroing Manifold

We first show that the structure of the proposed manifold allows constructive stabi-
lization techniques:

Lemma 5.6. Consider a controlled invariant manifold Mψ. There exists a
continuous-time control law k ∈ K which results in exponential stabilization of
∥ηk −ψ(zk)∥.

Proof. Consider a point (ηk, zk) and the evaluation of the current and next states
on the manifold: ψ(zk) and ψ(zk+1), respectively. As the η(t) dynamics are
feedback linearizeable, there exists a dynamically feasible trajectory ηd(t) such that
ηd(0) = (ψ(zk))+, and ηd(tk) = ψ(zk+1), where tk is the impact time and (·)+

denotes a post-impact state. For example, ηd(t) can be constructed using Bézier

131

polynomials [79]. Using a controller k ∈ K, i.e., satisfying the RES-CLF condition
(4.5), we can obtain exponential convergence to this trajectory in continuous time:

∥η(t)− ηd(t)∥ ≤Me− λ
ε

t∥η+
k − (ψ(zk))+∥,

for M, λ > 0. Taking T∗ > 0 to be the lower bound between impact times, the
impact states are uniformly bounded by:

∥ηk+1 −ψ(zk+1)∥ ≤Me− λ
ε

T∗∥η+
k − (ψ(zk))+∥.

Then, using the properties of the impact map we have:

∥η+
k − (ψ(zk))+∥ = ∥∆η(ηk, zk)−∆η(ψ(zk), zk)∥

≤ L∆∥ηk −ψ(zk)∥,

substituting into the bound above, and choosing ε > 0 sufficiently small that α =
ML∆e− λ

ε
T∗ ∈ (0, 1], we have:

∥ηk+1 −ψ(zk+1)∥ ≤ α∥ηk −ψ(zk)∥,

proving exponential stability to the manifold, as desired.

Remark: The desired trajectory ηd(t) is being implicitly replanned at impact via
ψ as a function of the underactuated state zk.

Composite Stability

The previous subsection demonstrated a method for constructing a controller to
exponentially stabilize the system to a controlled invariant manifold Mψ. We
now show that exponentially stabilizing the system to a manifold with stable zero
dynamics results in composite exponential stability of the entire system:

Theorem 5.7. Consider a controlled invariant manifoldMψ whose zero dynamics
are exponentially stable. Any control law exponentially stabilizing ∥ηk − ψ(zk)∥
stabilizes the discrete-time composite system (ηk, zk) to the origin.

Proof. Define ek = ηk − ψ(zk). By Lemma 1, there exists a continuous-time
controller k ∈ K rendering the discrete error dynamics exponentially stable. As
such, converse Lyapunov theory guarantees the existence of a Lyapunov function
Ve : E → R satisfying:

k1∥ek∥2 ≤ Ve(ek) ≤ k2∥ek∥2

∆Ve(ek) ≤ −k3∥ek∥2.

132

Figure 5.18: A depiction of the two necessary properties of Mψ: a) invariance
under the discrete map F, and b) stability.

Similarly, the stability of Mψ implies the existence of a Lyapunov function Vz :
Z → R satisfying:

k4∥zk∥2 ≤ Vz(zk) ≤ k5∥zk∥2

∆Vz(zk) = Vz(Ω(ψ(zk), zk))− Vz(zk) ≤ −k6∥zk∥2.

The Lyapunov function Vz will additionally satisfy [114]:

|Vz(z)− Vz(z′)| ≤ k7∥z− z′∥ (∥z∥ − ∥z′∥) ≜ Γ(z, z′).

Consider the composite Lyapunov function candidate V (ek, zk) ≜ σVe(ek)+Vz(zk)
with σ > 0, whereby:

min{σk1, k4}∥e, z∥2 ≤ V (e, z) ≤ max{σk2, k5}∥e, z∥2.

Furthermore, since zk is exponentially stable onMψ, discrete sequences onMψ

will be exponentially decreasing:

∥zk+1∥ = ∥Ω(ψ(zk), zk)∥ ≤Mλ∥zk∥,

133

for λ ∈ [0, 1) and M > 0. Compute the difference of ∆V :

∆V = σ∆Ve(ek) + Vz(Ω(η, zk))− Vz(zk)

= σ∆Ve(ek) + ∆Vz(zk)

+ Vz(Ω(ηk, zk))− Vz(Ω(ψ(zk), zk))

≤ −σk1∥ek∥2 − k6∥zk∥2

+ Γ(Ω(ηk, zk), Ω(ψ(zk), zk))

= −σk1∥ek∥2 − k6∥zk∥2

+ k7L
2
Ω∥ek∥2 + 2Mλk7LΩ∥ek∥∥zk∥

= −
∥ek∥
∥zk∥

⊤  σk1
2 − c(σ) −Mλk7LΩ

−Mλk7LΩ k6

 ∥ek∥
∥zk∥


where c(σ) = k7L

2
Ω− σ

2 k1, and Γ(Ω(η, z), Ω(ψ(z), z)) is bounded using Lipschitz

properties of the dynamics. Choosing σ > max
{

2M2λ2k2
7L2

Ω
k1k6

,
2k7L2

Ω
k1

}
ensures the

matrix is positive definite; therefore, V is a Lyapunov function certifying composite
stability.

Remark: Figure 5.18 depicts each of the assumptions used to prove stability in
Theorem 5.7, namely discrete invariance and exponential stability ofMψ. Subse-
quent sections will develop constructive techniques leveraging optimal control and
learning for finding such manifolds.

Trajectory Tracking
The manifold,Mψ, is designed to stabilize the origin. With suitable modification,
we can use this same manifold to track a time-varying reference trajectory on the
underactuated coordinate, z̄k, which is a common goal of legged systems whose
underactuated coordinates tend to be center of mass related. We begin by defin-
ing a related time-varying manifold Mk

ψ ≜ {(ηk, zk) | ηk = ψ(zk − z̄k)}, and
demonstrating that this manifold can be rendered control invariant as well:

Corollary 5.8. Consider a controlled invariant manifoldMψ and a discrete refer-
ence trajectory {z̄k} for k = 1, . . . , N for N ∈ Z+. There exists a continuous-time
control law k ∈ K which renders the time-varying manifoldMk

ψ controlled invari-
ant and results in exponential stabilization of ∥ηk −ψ(zk − z̄k)∥.

Proof. The proof is similar to Lemma 5.6, just updating the desired signal to z̄k+1

instead of a constant z̄.

134

Composite ISS

The zeroing manifold associated with the trajectory z̄k can be exponentially stabi-
lized by the constructions of Corollary 5.8. Define the normed state difference of
the trajectory:

v̄k ≜ ∥z̄k+1 − z̄k∥.

We next demonstrate that if the manifoldMψ has exponentially stable zero dynam-
ics, then the manifoldMk

ψ has input to state stable zero dynamics. To accomplish
this, we require the following assumption:

Assumption 5.9. The system dynamics, F, Ω, are invariant under translation along
the desired trajectory z̄k, i.e.:

F(ηk, zk, vk) = F(ηk, zk − z̄k, vk)

Ω(ηk, zk) = Ω(ηk, zk − z̄k).

The above assumption is often satisfied for legged robots, where underactuated states
are translational center of mass states, which do not effect the system dynamics.

Lemma 5.10. If the zero dynamics on Mψ are exponentially stable, then there
exists a Lyapunov function Vz : Z × Z→ R≥0 which satisfies:

c1∥zk − z̄k∥2 ≤ V (zk, k) ≤ c2∥zk − z̄k∥2

∆Vz(zk, k) ≤ −c3∥zk − z̄k∥2 + c4v̄k∥zk − z̄k∥+ c5v̄
2
k.

for constants c1, c2, c3, c4, c5 > 0.

Proof. Observe that the next state implied by the mapping zk+1 = Ω(ψ(zk −
z̄k), zk). Given that the zero dynamics onMψ are exponentially stable, we know
that there exists a function Ṽz satisfying:

∆Ṽz(zk) = Ṽz(zk+1)− Ṽz(zk) ≤ −k3∥zk∥2 (5.38)

Ṽz(z)− Ṽz(z′) ≤ k4∥z− z′∥(∥z∥+ ∥z′∥) (5.39)

for k3 > 0. By Assumption 5.9, we know that this inequality holds as well if we
shift the z coordinates at any point on the trajectory, z∗ = z̄k:

∆Ṽz(zk − z∗) ≤ −k3∥zk − z∗∥2,

135

Furthermore, from this stability property, we know that

∥zk+1 − z∗∥ ≤ β∥zk − z∗∥ (5.40)

for some β ∈ [0, 1). We propose a new Lyapunov function, Vz(zk, k) = Ṽz(zk− z̄k).
With this, denoting ∆Vz(zk, k) as ∆Vz for compactness, we have:

∆Vz = Ṽz(zk+1 − z̄k+1)− Ṽz(zk − z̄k)

≤ −k3∥zk − z̄k∥2 + Ṽz(zk+1 − z̄k+1)− Ṽz(zk+1 − z̄k)

≤ −k3∥zk − z̄k∥2 + k4(∥zk+1 − z̄k+1∥+ ∥zk+1 − z̄k∥)v̄k

≤ −k3∥zk − z̄k∥2 + 2k4β∥zk − z̄k∥v̄k + k4v̄
2
k,

where the third line uses (5.39), and the last line uses (5.40) and:

∥zk+1 − z̄k+1∥ = ∥zk+1 − z̄k+1 ± z̄k∥

≤ ∥zk+1 − z̄k∥+ ∥z̄k+1 − z̄k∥

≤ v̄k + β∥zk − z̄k∥.

Setting c3 = k3, c4 = 2k4β, c5 = k4 yields the desired result.

The previous result demonstrates that although the mappingψ implies that the origin
is exponentially stable, when we use this policy to track z̄k we can only converge to
a neighborhood of the desired trajectory on the zeroing manifold. Next, we show
that an exponentially convergent output feedback controller to a desired trajectory
implies input to state stability of the combined system:

Lemma 5.11. Consider a controlled invariant manifoldMψ whose zero dynamics
are exponentially stable. Any control law exponentially stabilizing ∥ηk − ψ(zk −
z̄k)∥ → 0 renders the signal (0, z̄k) input to state stable.

Proof. Consider the error on the output coordinates eη
k = ηk − ψ(zk − z̄k) and

define the error on the zero dynamics coordinates as ez
k = zk − z̄k. Next, consider

the composite discrete-time Lyapunov function:

V (eη
k, ez

k, k) = σVe(eη
k, k) + Vz(zk, k)

136

for σ > 0. Then, the difference equation is given by:

∆V = σ∆Ve(eη
k) + Ṽz(Ω(ηk, zk)− z̄k+1)− Ṽz(ez

k)

≤ σ∆Ve(eη
k) + ∆Vz(zk, k)

+ Vz(Ω(ηk, zk)− z̄k+1)

− Vz(Ω(ψ(ez
k), zk)− z̄k+1)

≤ −σk3∥eη
k∥2 − c3∥ez

k∥2 + c4v̄k∥ez
k∥+ c5v̄

2
k

+ k4∥eη
k∥(LΩ∥eη

k∥+ (LΩ(1 + Lψ) + β)∥ez
k∥+ v̄k)

where the last line uses (5.39) and:

∥Ω(ηk, zk)− z̄k+1∥ = ∥Ω(ηk, zk)±Ω(ψ(ez
k), zk)

±Ω(ψ(0), z̄k)− z̄k+1∥

≤ LΩ∥eη
k∥+ LΩ(1 + Lψ)∥ez

k∥+ v̄k.

Letting ek ≜
[
∥eη

k∥ ∥ez
k∥
]⊤

and c > 0 be a positive constant, we would like to
enforce the condition ∆V ≤ −c e⊤

k ek, which can be equivalently defined as:

−e⊤
k Mek + n⊤ekv̄k + c5v̄

2
k ≤ 0

for matrix M ∈ R2×2 and vector n ∈ R2 defined as:

M =
 σk3 − k7LΩ − c −1

2k7(LΩ(1 + Lψ) + β)
−1

2k7(LΩ(1 + Lψ) + β) c3 − c


n =

[
k7LΩ c4

]⊤
.

Ensuring that σ is chosen sufficiently large such that M has positive eigenvalues,
this condition is enforced if:

−λM∥ek∥2 + ∥n∥∥ek∥2v̄k + c5v̄
2
k ≤ 0

for λM the largest eigenvalue of M . Completing the square:

∥ek∥2 ≥
1√
λM

√ ∥n∥
4λM

+ c5 + ∥n∥
2
√

λM


︸ ︷︷ ︸

≜α

v̄k

yields:

∥ek∥2 ≥ αv̄k =⇒ ∆V ≤ −c e⊤
k ek.

which is the desired ISS conditions.

137

Figure 5.19: A depiction of Lemma 5.11, whereby input to state stability in the
zero dynamics coordinates and exponential stability in the output coordinates yields
input to state stability of the composite system.

Figure 5.19 illustrates the theoretical components developed in this section. The
left pane depicts the input to state stable discrete time zero dynamics coordinates, as
established in Lemma 5.10. The middle pane shows the exponentially stable output
coordinates generated in Corollary 5.8. Finally, the right pane shows the result of
their combination, demonstrating that the composite system is input to state stable,
thereby yielding the desired forward invariant error tracking tube.

Stability via Optimal Control
What we have shown thus far is that if we have a mappingψ which induces an output
zeroing manifold with exponentially stable zero dynamics, then we can conclude
stability of the overall system to an equilibrium point, or input to state stability
of the overall system to a desired trajectory on the underactuated (center of mass)
coordinates. In this section, we demonstrate that stable zero dynamics can be
generated by leveraging the following discrete-time optimal control problem:

V (x0) ≜ minxk,vk

∞∑
k=0

c(xk, vk) (5.41)

s.t. xk+1 = F(xk; vk)

h(xk, vk) ≤ 0

where V : XL → R is the positive-definite value function, c : XL × P → R is a
positive-semidefinite cost function and h : XL × P → Rp contains any state and
input constraints.

Remark: This choice of controller could be solved for in real time, as we did in the
previous sections. Instead, in this section we will investigate if there is a feedback
policy which aligns with (5.41).

138

We will leverage optimality to enforce the stability onMψ. This choice is motivated
by the fact that asymptotic stability is a necessary condition for an optimal controller
to be well defined [186]. As Theorem 5.7 rests on assumptions of exponential
stability, we define conditions under which optimality implies exponential stability:

Theorem 5.12. Let V (xk) be the value function for the optimal control prob-
lem defined in Equation (5.41), where the cost function is quadratic, c(xk, vk) =
x⊤

k Qxk + v⊤
k Rvk, and the domain X is compact. If there exists an ε > 0 such

that the LQR approximation of Equation (5.41) taken by linearizing the dynamics
around the equilibrium point satisfies:

vLQR(xk) = −Kxk ∈ H(xk) ∀xk ∈ Bε(0), (5.42)

withH(xk) ≜ {vk ∈ P | h(xk, vk) ≤ 0}, then the nonlinear system is exponentially
stable under the optimal controller.

Proof. See [187].

Remark: As exponential stability is preserved through diffeomorphism [26], the
resulting zero dynamics are rendered exponentially stable.

Since analytic forms for a mapping ψ are impossible to construct in general, we
rely on either 1) linearizations of (5.41) to construct a local approximation of ψ,
or 2) machine learning solutions to infer a neural network representation of ψ.
First, consider the linearization of a constraint-free version of (5.41) in η and z
coordinates:

min
ηk,zk,vk

∞∑
k=0

ηk

zk

⊤

Q

ηk

zk

+ v⊤
k Rvk (5.43)

s.t.

ηk+1

zk+1

 =
Aηη Aηz

Azη Azz

ηk

zk

+
Bη

0

vk.

This can be solved exactly via discrete time LQR to produce a gain matrix K, from
which the optimal closed loop linear dynamics can be written as:ηk+1

zk+1

 =
Aηη Aηz

Azη Azz

−
Bη

0

K


︸ ︷︷ ︸

≜Acl

ηk

zk

 .

139

From this, perform an eigendecomposition of Acl, and select a dim(Z) subspace
that is not orthogonal to z spanned by eigenvectors s1, . . . , sdim(Z) . Defining a
matrix S = [s1 · · · sdim(Z)], we can produce a map ψ as:

ψ(z) = S
([

0 I
]

S
)−1

≜ Sηz. (5.44)

This associates a desired output coordinate η with the invariant subspace spanned by
the selected eigenvectors si. Interested readers should refer to [188] for a complete
discussion of the continuous time case.

Leveraging LQR works as a local solution, but if we want more aggressive behaviors,
or the ability to include constraints, we need to solve the full optimization problem.
The difference between LQR and the full optimization problem is seen in the
vector fields Figure 2.9 and Figure 2.10. As an alternative to LQR, we present a
learning method that leverages the full optimal control problem (5.41) to ensure both
controlled invariance and stability of Mψ by producing a policy that is invariant
under the optimal action. To this end, consider the variable:

ζθ(z) ≜
ψθ(z)

z

 (5.45)

where ψθ is a neural network parameterization of the output ψ. Noting that ζθ
encodes a point on the manifold, we can define our loss function:

L(θ) = E
z∼UNIFORM

∥η∗
1 (ζθ(z))−ψ (z∗

1 (ζθ(z)))∥2
2 , (5.46)

where z∗
1 = Ω(ψ(z), z) and η∗

1 = F̂(ψ(z), z; v∗), with v∗ the optimal control input.
The expectation is taken over a uniform distribution over Z , therefore enabling a
dimension reduction as compared to the complete state space. The loss function
directly measures how far an initial condition on the manifold deviates from the
manifold under one discrete step of the optimal controller as depicted in Figure 5.20.

The learning pipeline outlined in Algorithm 2 starts an epoch by sampling a batch
of points from Z . The network is then evaluated to produce a set of points on
the current manifold, {ζθ(zi)}N

i=1. We then approximately solve the optimal control
problem Equation (5.41) using iLQR, as outlined in Section 2.5. Finally, we simulate
the system forwards one step to obtain (η∗

1, z∗
1) which the loss computation in

Equation (5.46) requires. If ψ attains zero loss, because of continuity of the
network and the loss function we can conclude that the resulting manifoldMψ is
invariant under the optimal control and can render the full order system stable by

140

Figure 5.20: Loss function visualization: a) The loss function exactly measures the
extent to which the manifold is not invariant under optimal action b) a Monte Carlo
approximation of the spatial loss is used, wherein the optimal policy is backpro-
pogated through to update the surface.

Algorithm 2 Monte Carlo Zero Dynamics Policy Training
1: hyperparameters: (Ξ, ρ, Υ)
2: Number of MC samples, Learning Rate and Number of Steps
3: Initialize θ ▷ Pretrained with reasonable policy
4: for i = 1 : Υ do
5: z ∼ UNIFORM(z, z)

6: ζθ ←
[
ψ(z)

z

]
the

7: x0 ← Φ−1(ζθ)
8: x∗

1:T , v∗
1:T ← iLQR(x0)

9:

[
η∗

1 (ζθ(z))
z∗

1 (ζθ(z))

]
← Φ(x1)

10: θi+1 ← θi − ρ∇θ
∑

z ∥η∗
1 (ζθ(z))−ψ (z∗

1 (ζθ(z)))∥22
11: end for
12: return θ

satisfaction of the preconditions for Theorem 5.7. In order to evaluate this loss,
we rely on iteratively solving convex approximations of the nonconvex problem via
iLQR. This choice is motivated by the fact that backpropagating the loss requires
computing ∂v∗

k

∂x , which is straightforward for iLQR. To this end, the Lagrangian of
the optimization program (5.41) is:

L(xk, vk,λk) = c(xk, vk) + λ⊤
k h(vk, xk)

withλk ∈ Rp the Lagrange multipliers. These can be determined from the stationary
condition:

Lv(xk, v∗
k,λ∗

k) = 0,

141

where Lv = ∂L/∂v. Using the result of [189], the gradient of the optimal control
input with respect to that state is given by:∂v∗

k
∂x

∂λ∗
k

∂x

 = −

 Lvv h⊤
v

diag(λ∗
k)hv diag(h)

−1  Lxv

diag(λ∗
k)hx

 (5.47)

which are evaluated at the optimal point (xk, v∗
k,λ∗

k) and the arguments suppressed.

Application of ZDP to ARCHER
We deployed the ZDP method on the 3D hopping robot ARCHER. To discuss the
application of ZDPs to ARCHER, consider the pose of the robot q = (p, q) ∈ Q
where p ∈ R3 represents the global position in world frame and q ∈ S3 the robot’s
orientation quaternion. Taking the velocities to be v = (ṗ,ω) ∈ TqQ for ṗ ∈ R3

the global linear velocity andω ∈ s3 the body frame angular rates, we can represent
the full state as x = (q, v) ∈ X ≜ TQ.

ARCHER evolves under hybrid dynamics. As such, its flight and ground phase
dynamics are governed by (5.32) and it has two impact maps (one for the ground to
flight transition, and another for flight to ground). We treat the vertical hopping as
an autonomous system, and will focus on how to stabilize the position of the robot
via orientation. The flight dynamics can be decomposed into actuated states, i.e.,
the orientation coordinates, and unactuated states, i.e., position coordinates:

η =
 q

ω

 , z =
p
ṗ

 .

Take (ηk, zk) to be a pre-impact state. The ground phase does not depend on the
control input, and the continuous-time evolution of the z coordinates has a weak
dependence on the discrete-time control input vk. We can assume Ω is independent
from vk because the effect of control inputs on impact time is negligible.

Online Control Implementation
Given a function ψ, the controller aims to stabilize its associated zeroing manifold
Mψ. Consider a state (η(t), z(t)) during the flight phase. We set the desired
orientation to ηd(t) = ψ(z(t)), and update this continuously throughout the flight
phase. The desired set point is converted to a quaternion, qd, which we stabilize
using the following quaternion PD controller in the flight phase:

u = −Kplog(q−1
d q)−Kdω,

142

for suitable gains Kp, Kd. This controller is applied at 1kHz.

One key addition to the controller as compared to the previous section on MPC is
the application of flywheel spindown in the ground phase. When the robot is in
contact with the floor, the following control action is applied:

u = −γϑ̇,

where ϑ̇ ∈ R3 represents the flywheel speed. This allows the system to maintain
lower flywheel speeds and mitigates the problem of speed-torque constraints. This
ground phase controller preserves the theoretical assumptions since the ground
phase control is independent of output of the policy. Without spinning down the
flywheels, they quickly reach their maximum speed after a few hops, leaving the
system unable to apply stabilizing torques. Crucially, differences between ground
and flight dynamics allow for spin-down control without destabilizing the system.
During flight, torques are applied about the center of mass, whereas in the ground
phase, torque is applied about the contact point. As the effective inertia is larger
in the ground phase (as it is computed about the contact point), the spin-down
controller can slow the flywheels without disturbing the system’s orientation. The
spin-down controller effectively maintains the controller bandwidth of the system
and avoids the problem of flywheel saturation.

There are a few implementation differences from our theoretical implementation.
The controller used in the proof of Lemma 5.6 differs from ours by (1) predicting the
pre-impact state zk+1, (2) tracking a trajectory ηd(t) defined by a Bézier polynomial,
and (3), using a RES-CLF. Empirically, a well tuned PD controller was sufficient
to stabilize the continuous time system, and the feedforward input tracking that a
trajectory would provide was not necessary.

ZDP Optimization and Learning Details
Notice that for discrete-time systems, Equation (5.41) is a nonlinear program even
if the value function is available. To solve this optimal control problem, we employ
Iterative LQR (iLQR), subject to box input constraints [190]. The iLQR problem is
solved in the x variable, so the initial condition is obtain via x = Φ−1(η, z). We
implemented Algorithm 2 in the JAX [191] and used a Network of 2 Layers with
256 hidden units each using ReLu activations. In our implementation of iLQR,
we assume that the low level controller has perfect tracking and exactly achieves
the desired angle with zero angular velocity. This considerably simplifies the flight
dynamics and therefore the trajectory optimization, allowing them to be solved

143

Figure 5.21: A snapshot of the experiments conducted with ARCHER, including
set point tracking, disturbance rejection, and hopping over rough terrain.

for in closed form. The input bounds H(xk) were chosen such that the torque
applied during flight is bounded by the difference between the post-impact state
and the desired pre-impact state. We require gradients of the optimal control, dv

dx ,
as presented in [192] — note that if no constraints are active, then this gradient is
exactly the feedback matrix K = Q−1

vvQvx from the iLQR algorithm.

Hardware Results
A collection of the experiments conducted on ARCHER can be seen in Figure 5.21.
iLQR requires a stabilizing initial guess in order to converge; therefore, we use the
LQR solution developed in (5.44) (which mirrors the Raibert heuristic) for the first
rollout. To eliminate this dependence, other optimal control methods could be used,

144

Figure 5.22: Comparing ZDP and LQR: (Left) A comparison between LQR (top)
and ZDPs (bottom) while tracking a 2 m setpoint. (Right) The output of the trained
policy and the actual state at impact over 3000 hops, as compared to an LQR
controller.

for instance SQP. The authors experienced difficulty with the speed and accuracy of
large-scale QP solvers in JAX and leveraged the fact that iLQR solves many small
QPs for speed and stability. Additionally, for computational efficiency, we limit the
number of iLQR iterations to five (empirically enough to obtain convergence for
this system). The full code base for this project can be found at [172].

The policy ψ was exported from JAX to an ONNX file, which is evaluated at 1kHz
on an Ubuntu 20.04 machine with AMD Ryzen 5950x @ 3.4 GHz and 64 Gb RAM
and torques are passed directly to the robot over ethernet. This controller does not
require this amount of compute to run, and could be feasibly implemented on an
NVIDIA Jetson or comparable board. A Kalman filter with projectile dynamics is
used to filter the position estimates from optitrack in the flight phase. The manif
library [193] is used to compute the log map for the quaternion PD controller.

We logged over 3,000 stable hops when deploying the ZDP method on the ARCHER
hardware platform, a selection of which can be seen in Figure 5.21 and in the
supplemental video [170]. Figure 5.22 depicts the desired impact angle, i.e., the
learned policy evaluation, and the actual impact angle over the complete collection
of all hardware tests. In general, as predicted by the theory, this manifold is both
invariant under the feedback controller, and stable. Also interesting to note is that
around the origin, the learned policy aligns with LQR, as presented in Theorem 5.12.
Notably, away from the origin, the learned policy diverges from LQR in order to

145

Figure 5.23: Square trajectory tracking: (Left) Overhead view with positional
hardware data overlayed (top) and velocity tracking (bottom) and (Right) wheel
velocities (top), torque (mid), and error (bottom) in the ground (green) and flight
(red) phase with mean and 2σ deviation.

maintain stability under the enforced input constraints. A comparison between the
trained policy and the application of a naive LQR controller when trying to track
a setpoint 2 m away is seen in the left part of Figure 5.22, wherein ZDPs maintain
stability by implicitly enforcing discrete invariance and optimality over a horizon.

The tight trajectory tracking and system behavior is seen in Figure 5.23, where
ARCHER was asked to follow two laps of a 1 m square trajectory. As seen on
the right of Figure 5.23, using a PD controller at the feedback level empirically
resulted in the error (and therefore the torques) converging exponentially fast to a
small neighborhood of zero during the flight phase. During this torque application,
the flywheel speed can be seen to grow, while the ground phase controller is able to
successfully regulate them close to zero.

146

For outside testing as shown in Figure 8.1, we took a different approach: linearizing
the optimal control problem, and construct a linear mapping as in (5.44). Inter-
estingly, as the underactuated coordinates for this system are position and velocity,
this linear mapping is precisely a Raibert Heuristic [194], mapping positions and
velocities to desired impact orientations. The Raibert Heuristic, critical in the sta-
bilization of legged systems, was a primary motivation for the development of the
ZDP. For the hopping robot, this process ultimately takes the form:

ηd(t) = EulToQuat (−kp(z(t)− z̄k)− kdż(t)) (5.48)

where kp, kd ≥ 0 are positive gains of the ZDP. In practice, all signals are also
clipped to prevent the robot from taking angles that are too aggressive.

Limitations
As training this policy involves querying the optimal control input and its gradients,
each iteration of the training process is computationally expensive (2 seconds per
iteration for a batch size of 30). iLQR requires a stabilizing controller to initialize
the rollout and therefore only locally improves a stabilizing policy. Furthermore, to
avoid sampling initial conditions in the training pipeline which the hopper cannot
stabilize, the policy ψ was pretrained with a conservative Raibert heuristic.

5.6 Summary
This chapter discussed methods of producing trajectories which, when tracked,
stabilize the underactuated (and therefore the full state) of legged robots. We
investigated the use of offline trajectory optimization via hybrid zero dynamics,
online trajectory optimization via model predictive control, and learning based
methods via zero dynamics policies. All of these methods allow us to abstract the
complexity of legged systems away, and focus on planning desired trajectories for
the center of mass states that guide legged robots towards goals, which will be the
problem of interest in the next chapter.

Chapter 6: High Level Tracking Layer

Contents
6.1 Bézier MPC . 148

6.2 Bézier Reachable Polytopes . 156

6.3 Summary . 162

Robust feedback controllers at the low level enable efficient planning on states of
reduced dimensionality at the high level.

148

This point in the thesis marks a significant philosophical transition: we shift our focus
from real-time feedback control on the full order system to feedforward planning,
i.e., the generation of paths that guide the system toward achieving specific goals.
Having established controllers capable of stabilizing the underactuated dynamics of
robotic systems, we now address the generation of trajectories that make progress
towards goals which satisfying environmental constraints. A critical advantage of
having robust feedback controllers at the lower levels is that they allow us to simplify
the dynamics constraints at planning time — we now only need to plan paths for
the center of mass states of the robot. This simplification, in turn, allows us to
incorporate more complex task relevant constants such as spatial objectives and
environmental constraints.

This section will be focused on answering the following two questions:

Question: How can we provide continuous-time guarantees for dis-
crete plans, and how can we produce efficient representations of the set
of states that a planner/tracker can reach?

To address these, we turn to Bézier MPC, a direct collocation method for optimal
control problems. Bézier MPC will allow us to derive computationally efficient
underapproximations of reachable sets, which can be used as a proxy for connectivity
between points for long horizon planning.

6.1 Bézier MPC
We begin by assuming that we are given a sequence of states {x̄k} and associated
convex sets {Xk}. The task at hand is to formulate an optimal control problem
that provides explicit guarantees on continuous-time trajectories which connect
these points, which is summarized by the following continuous-time optimization
program:

inf
xd(·),ud(·)

∫ T

0
xd(τ)⊤Qxd(τ) + N⊤xd(τ) + ud(τ)⊤Rud(τ)dτ (6.1)

s.t. x(γ)(t) = fd(xd(t)) + gd(xd(t))ud(t)

xd(t) ∈ Xk, ∀t ∈ [kT/N, (k + 1)T/N)}, k = 0, . . . , N

ud(t) ∈ U

where xd(·) is the desired state trajectory, ud(·) is the desired input trajectory, γ is
the relative degree of the assumed dynamics, U is an input constraint set, and where
the matrices Q, N, and R define quadratic costs on the state and input capturing
deviation from the reference trajectory, path length, and state and input deviations.

149

Dynamics
While planning models can take many forms, we focus here on systems whose
coordinates are given by qd ∈ Rm, with state xd = [q⊤

d , q̇⊤
d , . . . , q(γ−1)

d
⊤]⊤ ∈ XM ≜

Rn for some γ ∈ N, and control-affine dynamics of the form:

ẋd =
0 In−m

0 0

xd +
 0
fd(xd)

+
 0
gd(xd)

ud, (6.2)

where In−m is an identity matrix of size n −m, ud ∈ UM ≜ Rm is the input, the
drift vector fd : XM → Rm is locally Lipschitz continuous on Rn, and the actuation
matrix gd : XM → Rm×m is invertible for all xd ∈ XM.

In order to plan dynamically feasible trajectories for the system (6.2), we choose
to parameterize the system evolution via Bézier curves. Recall from Property 2.45
that given a time τ > 0, two points x0, xτ ∈ Rn, and order p ≥ 2γ − 1, there exists
a matrix D ∈ Rp+1×2n such that any curve xd(·) with control points satisfying:

pD =
[
x⊤

0 x⊤
τ

]
(6.3)

also satisfies xd(0) = x0 and xd(τ) = xτ . Furthermore, for this curve x(·) observe
that applying the continuous input signal:

ud = gd(xd)−1
(

q(γ)
d − fd(xd)

)
, (6.4)

results in integrator dynamics:

ẋd =
0 In−m

0 0

xd.

As such, the pair (xd, ud) for a state trajectory xd generated via (6.3) and an input
trajectory ud from (6.4) represents a dynamically feasible trajectory for the planning
system (6.2). The next challenge will be to ensure that the continuous time curve
satisfies the desired state and input constraints.

State and Input Constraints
We are now interested in satisfying the constraints in the optimal control problem,
namely xd(t) ∈ X and ud(t) ∈ U .

In order to ensure that the trajectories designed at the high level satisfy the as-
sumptions of the low level AL (as discussed in Section 3.6), we will need to
impose additional constraints. We begin by defining a box input constraint set

150

CU ≜ {u ∈ Rm | ∥u∥∞ ≤ umax} for umax > 0. Next, we define a convex state
constraint set CX ≜ {xd ∈ XM | Cxxd ≤ dx} with Cx ∈ Rp×dim(XM) and dx ∈ Rp.
Note that as AL is nonempty and contains the origin in its interior, we can make
CU and CX sufficiently small such that (xd(t), ud(t)) ∈ CX × CU for all t ∈ [0, T]
implies (xd(t), ud(t)) ∈ AL. To ensure tractability of the high level, we assume
that the sets passed from the high level Xk are defined as convex polytopes, i.e.,
Xk = {x̄ ∈ XH | Ckx̄ ≤ dk} for all k = 1, . . . , N, with Ck ∈ Rp×dim(XH) and
dk ∈ Rp. We now turn our attention to enforcing these constraints.

First, observe that the input constraints ud ∈ CU can be directly enforced by:

∥ud∥∞ ≤ umax. (6.5)

Next, consider the feasible state constraint set as:

QL ≜ {xd | Cx(xd + v) ≤ dx for all v ∈ EL}.

Enforcing this for each row i separately and letting ∥Ci∥∗ represent the dual norm
of ∥ · ∥, we have:

QL ⊆ {xd | Cx,ixd ≤ dx,i − sup
v∈EL

Cx,iv}

⊆ {xd | Cx,ixd ≤ di − ∥Cx,i∥∗e}

where e ≜ supv∈EL
∥v∥. Therefore, enforcing:

Cxxd ≤ dx −M(Cx)e

where M : Rp×dim(XH) → Rp is defined such that the ith row M(C)i = ∥Ci∥∗ results
in satisfaction of xd ∈ CX . Next, consider the constraints imposed by the high level:

QH ≜ {xd | Ck(ΠM
H (xd + v)) ≤ dk for all v ∈ EL}.

Using the same reformulation as above and recalling that ΠM
H is linear, we have:

CkΠM
H xd ≤ dk −M(CkΠM

H)e. (6.6)

With the above constructions, we reformulate these constraints onto an affine con-
straint on the Bézier curve:

Lemma 6.1. Given a reference point x̄d ∈ Xd, a matrix A ∈ Rk×n+2 and vector
b ∈ Rk, there exists a matrix L ∈ R4knm×n and a vector h ∈ R4knm such that:

L

 xd

q(γ)
d

 ≤ h =⇒ A


xd

∥xd − x̄d∥
∥ud∥

 ≤ b.

151

Proof. We begin by bounding the term ud(·):

∥ud∥ ≤ ∥gd(xd)−1∥∥q(γ)
d − fd(xd)∥. (6.7)

Taking x̄d ∈ Xd to be a reference point in the planning state space, we can bound
the first term by:

∥g−1(xd)∥ ≤ LG∥xd − x̄d∥+ ∥g−1(x̄d)∥, (6.8)

where LG is a Lipschitz constant of g−1 with respect to the∞-norm on CX , which
is well defined by the local Lipschitz continuity and nonzero assumptions on g and
the compactness of CX . Similarly:

∥q(γ)
d − f(xd)∥ ≤ Lf∥xd − x̄d∥+ ∥q(γ)

d − f(x̄d)∥. (6.9)

Now, let a ≜
[
a1 a2 a3

]
be a row of the constraint matrix A with a1 ∈ Rn and

a2, a3 ∈ R and b ∈ R the corresponding entry of the vector b. Substituting (6.8)
and (6.9) into (6.7), we can construct a quadratic form:

[
a2 a3

] ∥xd − x̄d∥
∥ud∥

 ≤ σ⊤Mσd + N⊤σd,

where σd ≜
[
∥xd − x̄d∥ ∥q(γ)

d − f(x̄d)∥
]⊤

and:

M = a3

2

2LGLf LG

LG 0

 , N =
a3Lf∥g−1(x̄d)∥+ a2

a2∥g−1(x̄d)∥

 .

Next, consider M̂ as the projection of M onto the positive semidefinite cone. With
this, we can define the function h : Xd × Rm → R as:

h(xd, q(γ)
d) = σ⊤

d M̂σd + N⊤σd + a⊤
1 xd.

Because M is symmetric, we have that M̂ ⪯ M. As such, points in the set
Ω ≜ {(xd, q(γ)

d) | h(xd, q(γ)
d) ≤ b} satisfy the desired inequality. Next, consider a

function ℓ : Xd × Rm → R of the form:

ℓ(xd, q(γ)
d) = c⊤σd + a⊤

1 xd,

for some vector c ∈ R2, along with the following optimization program:

δ∗ = sup
δ∈R

δ

s.t. ℓ(xd, q(γ)
d) ≤ δ =⇒ h(xd, q(γ)

d) ≤ b.

152

In general, this set containment problem may be challenging to solve; however, given
the specific problem structure this can be solved for in closed form (the details of
which can be found in [172]). Then, we have that the set Λ ≜ {(xd, q(γ)

d) | ℓ(xd, q(γ)
d) ≤

δ∗} ⊂ Ω; therefore points in Λ satisfy the desired constraints.

Finally, we will show that there exists a matrix Li ∈ R4nm×n+m and a vector
hi ∈ R4nm such that:

Li

 xd

q(γ)
d

 ≤ hi ⇒ ℓ(xd, q(γ)
d) ≤ δ∗.

Based on the definition of σd, the set Λ is given by:

c⊤

 maxi |xd − x̄|i
maxi

∣∣∣q(γ)
d − f(x̄)

∣∣∣
i

+ a⊤
1 xd ≤ δ∗,

which, taking c⊤ = [c1, c2], is equivalent to:
c1 c1 −c1 −c1

c2 −c2 c2 −c2

⊤

︸ ︷︷ ︸
≜F⊤

 (xd − x̄)i(
q(γ)

d − f(x̄)
)

j

+ a⊤
1 xd ≤ δ∗,

for all row pairs i ≤ n and j ≤ m and where δ∗ ≜ δ∗ ⊗ 1 with ⊗ denoting
the Kronecker product. Letting Li ∈ {0, 1}4nm×n+m be matrices capturing the i, j

permutations of the scaling matrix F⊤ above, we can reformulate this as:

[
L1 L2

]  xd − x̄
q(γ)

d − f(x̄)

+ (a⊤
1 ⊗ 1)xd ≤ δ∗,

which can be further rearranged as:

[
L1 + a⊤

1 ⊗ 1 L2

]
︸ ︷︷ ︸

≜Li

 xd

q(γ)
d

 ≤ δ∗ +
[
L1 L2

]  x̄d

f(x̄d)


︸ ︷︷ ︸

≜hi

.

Repeating this process for each of the k rows of the constraint matrix A yields the
desired result.

The previous Lemma demonstrates that the inequalities on the desired trajectory
xd(·) imposed by state and input constraints can be framed as affine constraints
on the space of possible trajectories. As curves are infinite dimensional objects,
traditional trajectory optimizers that attempt to solve (6.1) directly would generally

153

only approximately enforce these constraints. This is precisely where we see the
usefulness of Bézier curves — we can exactly enforce these constraints on the
continuous-time curve by reasoning about a discrete, low-dimensional collection of
Bézier control points:

Theorem 6.2. There exist matrices F and G such that any Bézier curve B : I → Xd

with control points p satisfying:

Fp⃗ ≤ G,

also satisfies xd(t) ∈ CX and ud ∈ CU for all t ∈ I .

Proof. Lemma 6.1 demonstrates that there exists a matrix L and vector h such that
the state and input constraints (6.6) and (6.5) can be enforced via a linear inequality
on the desired trajectory xd. Based on Property 2.44, we know that if we enforce this
constraint on the control points, it will be enforced for the continuous time curve.
Therefore, instead we must enforce:

L

 (P)j

(pHγ)j

 ≤ h

for j = 0, . . . , p. As this imposes linear constraints on the columns of p, this can
be vectorized and written as:

Fp⃗ ≤ G,

where F and G are appropriate reformulations of L and h to account for the vector-
ization. Enforcing this constraint results in state and input constraint satisfaction as
desired.

Model Predictive Control Formulation
In this section we establish how to compute the collection of points {xk} used to
define xd while meeting the desired constraints on the Bézier control points. With
Theorem 6.2, we have a constraint on the desired trajectory, which if satisfied, implies
state and input constraint satisfaction for the output of the high level. In addition
to these constraints, we will be interested in enforcing a trust region constraint with
respect to the reference signal {x̄k}:

∥xk − x̄k∥1 ≤ ϵ (6.11)

154

Figure 6.1: The constraints enforced in the Béz-MPC program, which optimizes
over the Bézier control points subject to satisfying the continuous time state and
input constraints.

for some ϵ > 0. Note that this can be converted into a linear constraint during
implementation. In order to improve the quality of the path x̄k, we formulate an
MPC program:

min
xk,pk

N−1∑
k=0

x⊤
k Qxk + Fx̄k + x⊤

NVxN (Béz-MPC)

s.t. x0 = x̄0, xN = x̄N (6.12a)

∥xk − x̄k∥1 ≤ ϵ (6.12b)

D⃗p⃗k = vec([x⊤
k x⊤

k+1]) (6.12c)

L⃗p⃗k ≤ G⃗ (6.12d)

where Q, F ∈ Rn×n are symmetric positive definite matrices weighting distance
to reference as well as path length, R ∈ Rm×m is a positive definite input scaling
matrix, and V ∈ Rn×n is a terminal cost. Solutions to this program can be converted
to dynamically feasible curves xd(·) for the reduced order model (6.2) via (2.22).

Simulation
We consider the following nonlinear system in simulation:ẋ1

ẋ2

 =
0 1
0 0

x1

x2

+
 0
sin(x1) + x3

2

+
0
1

u +
w1(t)
w2(t)

 .

The goal is to drive the system to the origin while satisfying state and input constraints
for all time. Fig. 6.2 demonstrates that at different time scales, both with and without

155

Figure 6.2: Comparison of three control methods: only using a low level controller
(CLF), applying MPC with no low level controller, and applying the proposed Béz-
MPC with a CLF at the low level. In both scenarios, just using the planning or
tracking layers separately yields both state and input violation.

added disturbances, using only either a low level or mid level controller results in
state and/or input violation, whereas the proposed combined approach is able to
satisfy both for all time. The MPC program (Béz-MPC) can be seen in Figure 6.3.
In the top left, we see how the reference path satisfying that assumption set of the mid
level,AM, is smoothed by the MPC program. In the top right, with a valid reference
signal, the MPC escapes from a local minimum that many myopic planners would
suffer from. In the bottom left, we observe that as MPC is done in the continuous

156

Figure 6.3: A depiction of the MPC program, which takes a sequence of reference
states x̄k and refines them into a dynamically admissible path. (Top Left) Ref-
erence points with associated Bézier curves, with subsequent points satisfying the
assumption set of the low level,AM, as shown by the green polytope. (Rest) Various
planning problems show MPC refining the reference.

time Bézier curve space, we are able to successfully traverse thin wall features that
some numerical optimizers struggle with. Finally the bottom right shows a path
through a randomly generated environment.

6.2 Bézier Reachable Polytopes
We now turn to the second question of this section:

Question: How can we efficiently approximate the set of states that a
tracker can achieve?

Given the constructions in Section 6.2, there exists an affine inequality that guaran-

157

Figure 6.4: A selection of Bézier curves and forward reachable sets. The top
row depicts curves with exact tracking, the middle row with a fixed size tracking
certificate, and the bottom row with a tracking certificate whose upper bound scales
linearly with the planning input ud.

tees the existence of a Bézier polynomial which results in the closed-loop planner-
tracker system satisfying state and input constraints. The matrix F and vector G
represent an efficient oracle to check whether Bézier curves connecting initial and
terminal points satisfy these constraints. Combining this affine constraint with Prop-
erty 2.45 allows us to place constraints on the desired boundary conditions of the

158

Figure 6.5: A depiction of the forward reachable sets as a function of system
parameters. (Top Row) 1-step reachable sets, as in Theorem 6.2. (Bottom Row)
20-step reachable sets, as in Corollary 6.3. (Left Column) Varying the input
constraint umax (Middle Column) Varying the time horizon T (Right Column)
Varying the initial condition.

Bézier polynomial — that is, given an initial condition x0, the set characterized by:

F(x0) = {xd ∈ Xd | FD⃗†
[
x⊤

0 x⊤
T

]⊤
≤ G},

represents all terminal conditions for which there exists a feasible Bézier polynomial.
As such, the setF(x0) can be thought of as the forward reachable set of the point x0.
Similarly, given a terminal condition xT , the backward reachable set is characterized
by:

B(xT) = {x0 ∈ Xd | FD⃗†
[
x⊤

0 x⊤
T

]⊤
≤ G}.

A depiction of the forward reachable set for a pendulum system and a variety of
system parameters can be seen in Figure 6.4. As the error tracking tube E varies
in its dependence on ud, the reachable sets change shape to ensure that closed loop
system still satisfies the desired constraints.

Reducing Conservatism
In the previous discussion, we used a reference point x̄d and bounded the deviation
of a trajectory from this point. While this enables tractability, it creates conservatism

159

in the bound as the same reference point was used over the entire trajectory xd(·).
To resolve this conservatism, we would like to instead bound the trajectory with a
collection of reference points {x̄k} spread out over the time interval [0, T]. Towards
this goal, we leverage the notion of a k-refinement of the interval [0, T] from
Definition 2.46 as well as reference points {x̄i} for i = 1, . . . k With these, we can
construct a piecewise constant reference trajectory x̄(t) = x̄i for t ∈ [Ti−1, Ti) with
i = 1, . . . , k. With this reference trajectory, we have the following:

Corollary 6.3. Let system Σd be a planning model for a system Σ with tracking
certificate E , and consider a piecewise-constant trajectory x̄(t) defined with respect
to a k−refinement of the interval [0, T]. There exist matrices F̂ and Ĝ such that any
Bézier curve B : I → Xd with control points p satisfying:

F̂p⃗ ≤ Ĝ, (6.13)

when tracked results in the closed loop system satisfying Π(xcl(t)) ∈ CX and
k(xcl(t), xd(t)) ∈ CU for all t ∈ I .

Proof. As refinement is linear in the control points, we can leverage the matrices
from Theorem 6.2 and right multiply F by Q⃗i, the vectorized version of the refine-
ment matrix Qi for i = 1, . . . , k to produce F̂. Taking Ĝ = Ĝ yields the desired
result.

By enforcing the constraint in (6.13), we are able to ensure that the desired trajectory
stays close to the piecewise constant reference trajectory, as opposed to a single
reference point. This will reduce the conservatism of the bound, but requires
increasing the number of constraints needed (and therefore faces of the polytope),
demonstrating an obvious trade-off. A depiction in the difference in resulting
reachable sets can be seen in Figure 6.5. When a single points is used, the reachable
set indicates the neighborhood around which that reference point can be feedback
linearized, potentially requiring significant input over long time horizons. Instead, if
we have a sequence of points, we can forward simulate the drift dynamics to produce
reference trajectories, whereby the reachable set represents the neighborhood around
the trajectory which we can converge to, thereby reducing conservatism. This notion
is especially useful when using such reachable sets to represent an MPC layer, which
often uses a sequence of reference points to linearize around.

160

Figure 6.6: The proposed method applied to the pendulum swingup problem. As
the input bounds are tightened from 5 Nm (bottom) to 0.5 Nm (top), the resulting
graph search trajectory increases in complexity and length.

Simulation Results
We deploy the use of Bézier Reachable Polytopes towards the task of swinging up
the pendulum. The duration of planning horizon needed to accomplish this task
depends highly on how tight the input constraint for the system is. In this setup, the
tracker was taken to be the feedback linearizing controller, and the planner produced
trajectories on the pendulum dynamics. This planner-tracker was interfaced with
a graph-search problem, which samples states uniformly from the state space and
connects two vertices vi, vj ∈ Xd with an edge if the intersection of their forward
and reachable sets were nonempty, i.e., F(vi)∩B(vj) ̸= ∅. This represents a graph
of dynamically feasible Bézier curves, whereby a suitable Bézier curve between two
boundary conditions can be found by solving a discrete graph search problem. As
seen in Figure 6.6, when the low level input constraints are tight, the graph search has
to produce a long sequence of points to achieve pendulum swingup. Instead, if the

161

Figure 6.7: Hardware results on the 3D hopping robot, ARCHER. When commanded
to cross the room, naive decision making provides a setpoint to the planner which
is outside what is achievable by the low level, leading to system failure. Instead,
if Bézier Reachable Polytopes are used, the decision level provides a sequence of
waypoints to the planner that results in completion of the objective while satisfying
state and input constraints.

input constraints are loose, then a nearly direct swingup behavior can be achieved.
In this way, we observe that the computational complexity of the decision making
level is imposed by the limitations of the underlying full order system. The code for
this project is available at [172].

Hardware Results
We also deploy the Bézier Reachable Polytopes framework towards the control of
a 3D hopping robot, ARCHER [107], as seen in Figure 6.7. Let (p, q) ∈ R3 × S3

denote the global position and quaternion of the robot, and (v,ω) ∈ R3 × s3 the
global linear velocity and body frame angular rates. The full state of the robot
x ∈ X ⊂ R20 contains these values, as well as foot and flywheel positions and
velocities. Planning long-horizon tasks for this robot is extremely challenging due
to the large number of passive degrees of freedom, tight input constraints, and
hybrid dynamics. Separating the path planning problem into a layered architecture
consisting of a tracking controller, a planner, and a decision layer enables this task
to be split up, whereby behavior can be generated efficiently.

In this setup, we take the planning model to be a double integrator with state
xd ∈ Xd ≜ R4 and input ud ∈ Ud ≜ R2. This planning model Σd can be
corresponded with the hopping robot Σ by a projection map Π : X → R4 taken
to be the restriction of the full order state to the center of mass x and y positions

162

and velocities. The tracking model is the linearized version of the ZDP developed
in the previous section. As seen in Figure 6.7, if only the feedback layer is used,
the system fails because the desired setpoint is outside the region of what can be
accomplished by the tracking system. Instead, if the proposed method is used,
the decision layer can autonomously produce a sequence of points which maintain
stability and constraint satisfaction over the task.

6.3 Summary
In this chapter, we saw that by parameterizing the trajectory optimization problem
with Bézier curves, we could make continuous time guarantees for the state and input
constraints satisfaction of the continuous-time closed loop system. Furthermore, we
saw how this transcription method enabled efficient representations of the reachable
sets of the planner, which will be leveraged in the next section to provide and efficient
oracle for determining the kinodynamic connectivity of points in the reduced order
state space.

Chapter 7: High Level Planning Layer

Contents
7.1 Kinodynamic Bézier Graphs 164

7.2 Nonconvex Path Planning in Real Time 170

7.3 Summary . 173

Graphs of behaviors provide an abstraction for complex high level reasoning.

164

Figure 7.1: The path planning framework. From left to right: a) A Bézier graph is
constructed, b) it is cut based on the present obstacles, c) a path is solved, and d)
the path is refined with MPC.

In the previous section, we saw how to design an efficient oracle for the planning
system, which, when queried gives a notion of connectivity between points in
the state space. In this section, we leverage this oracle to produce graphs of
kinodynamically feasible curves, and pair this with hardware accelerated compute to
efficiently prune the graph and solve for paths in cluttered environments in real time.

7.1 Kinodynamic Bézier Graphs
The goal of this section will be to produce sequences of points {x̄k} and convex
cell decompositions {Xk} when obstacles are present, i.e., the free space is non-
convex. The approach will be to produce a graph of dynamically feasible Bézier
curves leveraging the Bézier reachable polytopes developed in the previous section,
cut the edges that intersect obstacles, and perform a graph search that will serve
as a feasible warm start for the previously developed Bézier trajectory optimization
program. The paradigm is outlined in Algorithm (3) and shown in Figure 7.1, and
starts with building a graph of Bézier curves.

Build Graph
The compact state space of interest Xd represents the free space of the problem
setup, and will serve as a seed which we can prune in the presence of obstacles. A
graph G is described by a tuple (V, E) with vertices V connected by edges E. For

Algorithm 3 Bézier Graphs
1: hyperparameters: (N, T) ▷ (Node count and time interval)
2: G ← buildGraph(Xd, U)
3: {Xk} ← decomposeFreeSpace(O)
4: C ← cutGraph(G, O)
5: v∗

k ←findPath(C)
6: xd(·)←refineWithMpc(v∗

k,O)
7: return xd(·)

165

Figure 7.2: A depiction of the process of the high layer, which 1) builds a graph
of Bézier polynomials, 2) decomposes the free space into convex free spaces and
obstacles, 3) cuts edges based on the present obstacles, and 4) solves for a path.

the purpose of our analysis, the vertices will represent points in the reduced-order
state space Rn. A directed edge between two vertices e = (v1, v2) for v1, v2 ∈ V

will represent the existence of a dynamically feasible trajectory connecting v1 to v2.
To begin, N points are uniformly sampled vi ∼ U(Xd) and the matrices F and G
from Theorem 6.2 are generated. Two points vi and vj are connected with an edge
ei,j if they satisfy F

[
v⊤

i v⊤
j

]⊤
≤ G. As such, every edge in the graph implies

the existence of a dynamically feasible Bézier curve connecting them. This initial
graph will be fixed throughout the remainder of the Algorithm.

Build Environment Representation
Given the graph G constructed previously, we would like the remove graph edges
which lead to collisions with obstacles in the environment. This operation can be
efficiently performed if we have either 1) a representation of obstacles as convex
polytopes, or 2) a representation of the free space as a union of convex polytopes.
The experiments later in this section leverage both of these perspectives depending
on the available sensing capability.

Algorithm 4 DecomposeFreeSpace(Pf ,Po)
Input: Pf — set of free points; Po — set of occupied points
Output: Xf — collection of free-space regions

1: {P(i)
f }ki=1 ← KMeansCluster(Pf , k)

2: Xf ← ∅
3: for all (i, j) such that 1 ≤ i ≤ j ≤ k do
4: A, b← FitEllipse(P(i)

f ∪ P
(j)
f)

5: P(i,j)
o ← {y = A(p− b) | p ∈ Po and y ≤ 1}

6: X (i,j) ← FitFree(P(i,j)
o)

7: Xf ← Xf ∪A−1X (i,j) + b
8: end for
9: return Xf

166

Figure 7.3: A visual depiction of the DecomposeFreeSpace algorithm, which fits
convex polytopes to free spaces by a) fitting an ellipse to clustered free points, b)
mapping occupied points outside a circle and computing a convex hull c) mapping
the convex hull back inside the circle, and convexifying, and d) mapping back to the
environment.

Union of Convex Free Spaces LetO : Zdim(XH) → {0, 1} denote a 2D occupancy
grid. To produce a convex cell decomposition, we implement a modified version
of FitFree, the algorithm from [195], outlined in Algorithm 4. Our modifications
aim to automatically choose sets of points to run FitFree on, avoiding tuning of
the radius of points considered, retaining fast computation speeds by considering
subsets of the occupied points, and encouraging connectivity of the resulting convex
sets.

First, the free space of O is divided into k clusters using the K-means clustering
algorithm [196], [197]. Then, for each cluster (when i = j), and each pair of
clusters (when i < j), FitEllipse outer-approximates the free points with an ellipse
using three standard deviations of the variance matrix, and picks the center point to
be the free space point closest to the mean. Critically, evaluating pairs of clusters
encourages connectivity of the resulting convex polytope cover of the free space.
Next, all of the occupied points inside the ellipse are transformed into the unit circle,

167

and FitFree is run on the transformed points, exactly as in [195]. Finally, the convex
free polytope is transformed back into the original space. With this, Algorithm 4
produces a convex cell decomposition of the free space, i.e., ∪Xk ⊂ X .

Union of Convex Obstacles Alternatively, a collection of convex obstacle repre-
sentations are directly fit to the occupied space ofO. In this regime, a set of convex
obstaclesOk is returned instead for an a priori specified hyperparameter of number
of obstacles k. This is done by fitting a rectangular (but not axis aligned) bounding
box to an image mask of the obstacle using the OpenCV library in Python. Either
representation is conducive to efficient graph cutting operations, as discussed in the
next section.

Cut Graph
Given a graph of Bézier curves G, we remove the edges that could result in collisions
with any obstacles that are present.

Union of Convex Free Spaces In this case, the cutting of the graph is straightfor-
ward: any Bézier curves whose control points do not lie in any convex cell are cut.
As with the following discussion, this operation can easily be parallelized on GPU,
as it simply requires simultaneous linear inequality checks.

Union of Convex Obstacles Given a set of obstaclesO, Property 2.43 states that a
Bézier curve is guaranteed to be collision-free if the convex hull of its control points
does not intersect with any obstacles, i.e., conv{P} ∩ O = ∅. For each edge e with
control points P and convex obstacleOi characterized by nc hyperplane constraints
AOi ∈ Rn×nc and bOi ∈ Rnc , the problem of determining if the curve is collision-
free can be formulated as a linear program feasibility check via Property (2.43),
which we solve using the following quadratic program:

min
λ,δ

δ⊤δ (Cut-QP)

s.t. AOiPλ ≤ bOi + δ

λj ≥ 0,
∑

j

λj = 1

whereλ ∈ Rp+1 is the convex interpolation variable and δ ∈ Rnc is a slack variable.
Given the solution δ∗, if ∥δ∗∥2 > 0 then the curve is obstacle free. This program
can easily be vectorized to solve all edges simultaneously.

168

Figure 7.4: The heuristic employed to check if the Bézier curve is collision free.
First, obstacle membership is checked. If not satisfied, a single proposed separating
hyperplane is checked. Finally, the Quadratic Program (Cut-QP) is solved.

Although this is a quadratic program and therefore can be solved efficiently, solving
it for every edge and obstacle becomes too computationally expensive for real-
time operation (even when parallelized), especially when the edge and and number
of obstacle count is large. To address this, we introduce the heuristic outlined in
Algorithm 5, which consists of three checks. First, we determine if any of the control
points of P lie in the obstacle — if so, the curve may intersect the obstacle. Next, we
attempt to find a separating hyperplane between the obstacle and the control points
— if one exists, then the curve will be collision free. If the points do not lie on one
side of the hyperplane, then the heuristic is indeterminate, and the original quadratic
program must be solved. In practice, this heuristic typically removes > 99% of the
edges that need to be checked; furthermore, this heuristic is easily implemented
on GPU as it only requires linear algebra operations, which significantly improves
execution speed (as reported in Section 7.2).

Algorithm 5 cutHeuristic
1: if any(Avi ≤ b) then ▷ Figure 7.4a)
2: return 0
3: end if
4: vo ←closestPoint(vi)
5: (h, l)←adjacentHyperplane(vo)
6: if all(hvi ≤ l) then ▷ Figure 7.4b)
7: return 1
8: end if
9: Solve QP ▷ Figure 7.4c)

10: return ∥δ∗∥ > 0

169

Find Path
Due to the random sampling of the points in the graph, the starting and goal positions
are likely not vertices. Therefore, the start and goal nodes are chosen as the closest
normed-distance points to the desired start and goal positions. The edge cost is
taken to be

∑
i ∥Pi+1−Pi∥, the upper bound on the path length of the Bézier curve

from Property 2.49. We then use Dijkstra‘s algorithm to solve Problem 7.1:

Problem 7.1. Consider a collision-free graph of Bézier curves C = (V, E) produced
by Algorithm 3. Find a path {v∗

k}K
k=0 in the graph connecting v∗

0 to v∗
K = Π(xG)

with v∗
0 satisfying Π(x(0)) ∈ v∗

0 ⊕ Ē .

Refine the Path
If the graph solve v∗

k exists, it represents a feasible path for the system to safely
traverse the cluttered environment; however, it may be significantly suboptimal. To
improve its optimality, we can solve a finite time optimal control program, which
balances tracking the graph solution with short-horizon optimality. Note that by
Property 2.45, a solution Problem 7.1 can be converted into a dynamically feasible
curve xd(·) for the reduced order model (6.1). Then, we sample this curve at the
optimal control time discretization to produce a sequence of reference points rk,
which can be optimized:

min
x,u

N−1∑
k=0

x⊤
k Qxk + Frk + u⊤

k Ruk + x⊤
NVxN (MPC)

s.t. xk+1 = Axk + Buk (7.2a)

x0 ∈ Π(x(0))⊕ Ē (7.2b)

D
[
xk xk+1

]
∈ Xd\(O ⊕ E) (7.2c)

F
[
xk xk+1

]
≤ G (7.2d)

xN = rN (7.2e)

where Q, F ∈ Rn×n are symmetric positive definite matrices weighting distance
to reference as well as path length, R ∈ Rm×m is a positive definite input scaling
matrix, and V ∈ Rn×n is a terminal cost. The matrices A ∈ Rn×n and B ∈ Rn×m

are the exact discretization of the integrator dynamics in (6.1). The constraint
Xd\(O⊕E) is enforced by fining a separating hyperplane between the node xk and
the closest obstacle (where the same adjacentHyperplane call form the heuristic can
be made). In order to improve the quality of solutions, (MPC) can be iteratively
solved in an SQP fashion.

170

Importantly, the graph solve represents a feasible warm start for the MPC program,
and can be thought of as providing a corridor and a dynamically feasible path which
MPC can refine. The main motivation for the structures used in this paper is the
notion of guaranteed feasibility:

Theorem 7.2. If the graph solve is feasible, then the high level problem is solved by
applying (MPC) in closed loop.

Proof. First, we must show that at time t = 0, the solution v∗
k from Problem 7.1

provides a feasible solution for (MPC). Let rk denote the refined sequence of v∗
k,

which is constructed to produce the reference for (MPC) using Property 2.47. As this
is associated with a Bézier curve for the reduced-order model, it satisfies the discrete
dynamics (7.2a). Next, by the definition of Problem 7.1, we know Π(x0) ∈ v∗

0 ⊕ Ē ,
which implies that (7.2b) is satisfied by Mikoswki addition properties. As v∗

k is in
the collision-free graph C, it satisfies (7.2d) and (7.2c). By construction, (7.2e) is
satisfied. Therefore, r∗

k represents a feasible solution for (MPC).

Next, take x∗
k to denote the MPC solution and consider the time interval I =

[
0 h

]
for MPC discretization h > 0. From Lemma (2.45), we know that there exists a
unique curve xd(·) defined over I connecting x∗

0 to x∗
1. By Theorem 6.2, the closed

loop system tracking this curve will satisfy CX and CU for all t ∈ I . Furthermore,
by virtue of the low level controller, we have that Π(x(h)) ∈ x∗

1⊕ Ē . Therefore, we
can appeal to standard Robust tube MPC theory [75] to claim recursive feasibility
and robust stability of the closed loop system tracking the MPC solution, meaning
the goal state is achieved and CX and CU are satisfied for all time.

We have shown that if there is a solution to the graph problem in Algorithm 3, then
the closed loop system tracking MPC will satisfy state and input constraints Xd\O
and U for all time, and will approach a neighborhood of the goal xG.

7.2 Nonconvex Path Planning in Real Time
We deploy Algorithm 3 on the 3D hopping robot, ARCHER [107] — a video can
be found at [198] and the code for this project is available at [172]. The most
challenging problem preventing the nonconvex problem from being directly solved
in real time is appropriately choosing a collection of corridors to traverse. By
combining problems at various time scales, the graph solve is able to provide a
coarse estimate of the keep in constraints while foregoing path optimality, and the
short horizon MPC is able to refine it into a more optimal path. Therefore, we

171

Figure 7.5: 500 randomly generated obstacles with graph replanning at 10 Hz and
(MPC) at 200 Hz. Cyan indicates the Bézier graph solve v∗

k and blue the MPC
Bézier solution xd(·).

choose to plan desired center of mass trajectories xd ∈ R4 with virtual force inputs
ud ∈ R2, which are assumed to have double-integrator dynamics.

In order to solve (Cut-QP) and the MPC program, the OSQP library [199] was used
with maximum iterations limited to 50. The heuristic for cutting the graph and
getting the separating hyperplanes was running on a custom written CUDA kernel.
Using the GPU to perform these operations was critical to real-time performance
— as summarized in Table 7.1, the CUDA kernel provided a significant speedup as
compared to multithreaded CPU implementation. A nominal graph with 0.5 second
Bézier curves and a 50 node MPC horizon with a timestep of 0.1 s were used. Each
iteration of the MPC program was solved at 100 Hz, and in practice 1 SQP iteration
was taken. Finally, path length cost was scaled significantly higher than tracking
cost in order to incentivize shorter paths than the graph solve could provide.

Table 7.1: Comparison of functions on CPU, parallelized CPU, and GPU. Any CPU
implementation would violate real time constraints.

cutHeuristic adjacentHyperplane
CPU 5920 ± 36 ms 6.24 ± 0.08 ms
Parallel CPU 3640 ± 31 ms 2.52 ± 0.33 ms
GPU 72.0 ± 1.5 ms 0.61 ± 0.14 ms

172

Figure 7.6: A long-horizon maze with 600 cells, 300 obstacles and 50,000 edges.
The graph cut is solved at 10 Hz, and graph solve and MPC both run at 200 Hz.
Blue represents the graph solve, and red the closed loop system behavior.

Simulation and Hardware
As can be seen in Figure 7.5 and Figure 7.6, the proposed framework is able to
solve extremely long horizon tasks with numerous obstacles in real time. Figure 7.5
shows how the MPC solution xd(·) can refine the graph solve v∗

k to improve the
optimality of the path while maintaining collision avoidance. In Figure 7.6, a grid
was used instead of random sampling due to the structured nature of the problem.
In both of these settings, about 5000 nodes were sampled for the graph, leading to
50,000 edges to have to be processed every graph solve time step. In this setup,
the (Cut-QP) takes 2.7 seconds to run per obstacle, even when limited to 50 solver
iterations. When the heuristic runs, it is able to remove > 99% of the edges and
leads to solve times of 10-20 ms.

For the hardware setup seen in Figure 1.3, in order to estimate obstacle locations,
we had an overhead ZED 2 camera and used the SAM2 segmenting repository
[200]. Once the experiment started, the segmenter was initialized with a single
click per obstacle, and was able to parse obstacle locations for the remainder of the
experiment, which were streamed over ROS to the hierarchical controller. SAM2

173

Figure 7.7: Experiments run on the ARCHER hardware Platform. (Top) 3 snapshots
of the graph solve for various obstacle configurations. (Left) An overhead image of
the graph solve and the closed loop system trajectory. In the upper right and bottom
left corner, the MPC refinement around the corner can be seen. (Right) Freeze
frames of the graph updating online when the obstacle locations are moved.

segmented 20 obstacles at 4 Hz, and the graph cut and MPC ran at 50 Hz and 200
Hz, respectively. We provided various cluttered environments to ARCHER, which
was able to solve for feasible paths and traverse them in real time. In the bottom
right of Figure 7.7, the real-time replanning of the graph can be seen as the obstacles
were kicked around in the environment.

7.3 Summary
In this chapter, we saw how abstractions of the mid and low level controllers in the
form of reachable sets could be used to efficiently produce graphs of kinodynam-
ically feasible curves. Then, by leveraging the structure of compute to efficiently
prune and solve for paths in this graph, the long-horizon planning problem could
efficiently be deployed in real time, enabling significant speedup when compared to
a CPU implementation. These solutions provide initial guesses for gradient based
optimizers, and successfully enabled real-time nonconvex path planning in cluttered
environments.

Chapter 8: The Complete Architecture

Contents
8.1 Theory . 175

8.2 Experiment . 179

8.3 Summary . 181

General autonomy will, in some way, shape, or form, leverage layered control architectures.

175

8.1 Theory
We begin this section by recalling the problem we set out to solve:

Problem. Given an initial state x0 ∈ X , a goal state xG ∈ X , constraint sets
X ⊂ Rn and U ⊂ Rm, a horizon T > 0, and a tolerance ε > 0, design a controller
k : Rn → Rm such that the closed-loop trajectory xcl of system (3.1) satisfies:

• ∥xcl(T)− xG∥ ≤ ε

• xcl(t) ∈ X ⊂ Rn for all t ∈ [0, T]

• k(xcl(t)) ∈ U ⊂ Rm for all t ∈ [0, T].

At the outset, we developed the specifications of each component of the hierarchy in
Section 3.6. From Theorem 3.8, we know that if we can produce components that
meets these specifications, then we can solve the main problem of interest:

Low Level Tracking Layer LTracking
Low

• In : ιL = (xd, ud) ∈ C1(R+,XL)× C1(R+,UL)

• Out: yL = (x, u) ∈ C1(R+,XL)× C1(R+,UL)

• GL,1 : ιL 7→ {yL | x ∈ xd ⊕ EL}

• GL,2 : ιL 7→ {yL | u ∈ UL},

for EL ⊂ XL satisfying EL ⊂ Bε(0) for the desired tolerance ε > 0 defined in
Problem 3.1.

Low Level Planning Layer LPlanning
Low

• In : ιL = (x̄d, ūd) ∈ C1(R+,XM)× C1(R+,UM)

• Out: yL = (xd, ud) ∈ C1(R+,XL)× C1(R+,UL)

• GL,1 : ιL 7→ {yL |ΠM, L(xd) ∈ x̄d ⊕ EM}

• GL,2 : ιL 7→ {yL | ud ∈ UL},

for EM ⊂ XM satisfying ΠH, M(EM) ⊂ Bε(0).

176

High Level Tracking Layer LTracking
High

• In : ιM = ({x̄k}, {Xk}) ∈ XH × P(XH)

• Out: yM = (x̄d, ūd) ∈ C1(R+,XM)× C1(R+,UM)

• GM,1 : ιM 7→ {yM |ΠH, M(x̄d(t)) ∈ Xk⊖ΠH, M(EL)∀t ∈ [kT/N, (k+1)T/N)}

• GM,2 : ιM 7→ {yM |ΠH, M

(
x̄d

(
kT
N

))
∈ x̄k ⊕ EM}.

High Level Planning Layer LPlanning
High

• In: ιH = (x0, xG,X) ∈ XH ×XH × P(XH)

• Out: yH = ({x̄k}, {Xk}) ∈ XH × P(XH)

• GH,1 : ιH 7→ {yH | x̄0 = x0 and x̄N = xG }

• GH,2 : ιH 7→ {yH | Xk ⊆ X for k = 0, . . . , N}

• GH,3 : ιH 7→ {yH | x̄k ∈ Xk for k = 0, . . . , N},

where X ⊆ XH is the free space.

Given the methods constructed in this thesis, we have the necessary tools to prove
that the instantiated components satisfy these requirements:

Low Level

Theorem 8.1. There exists AL ⊂ XM × UM and E ⊆ XM such that if ΠM,L(x0) ∈
xd(0) ⊕ E , then for any reference trajectory xd : R≥0 → XM and corresponding
input trajectory ud : R≥0 → UM satisfying (xd(t), ud(t)) ∈ AL for all t ≥ 0, the
tracking error satisfies ΠM,L(x) ∈ xd ⊕ E and the input satisfies u(t) ∈ UL for all
t ≥ 0.

Proof. We leverage the Zero Dynamics Policies construction from Section 5.5 to
show this. From the training of the policyψ with respect to the loss function defined
in (5.46), we know that the resulting zeroing manifoldMψ is controlled invariant,
and has exponentially stable zero dynamics. This fact combined with Corollary 5.8
implies that the zeroing manifold Mk

ψ can be rendered controlled invariant, and
the output ηk − ψ(zk − z̄k) can be rendered exponentially stable. Combining

177

Lemma 5.10 and Lemma 5.11 results in the composite discrete-time system being
input to state stable. Denote the set rendered invariant around the desired trajectory
to be Ed(xd, ud). To demonstrate the satisfaction of the input bounds, note that since
the origin is an unactuated equilibrium, there exists open sets around the origin
which use arbitrarily small input. With these, we can define the assumption set
which satisfies state and input constraints as AL = {(xd, ud) |ΠM,L(Ed(xd, ud)) ⊆
E and k((0, z̄k)⊕ Ed(xd, ud)) ⊆ UL}.

A depiction of the empirical existence of this tracking invariant is shown in Fig-
ure 5.23.

High Level

Theorem 8.2. Given T > 0 and a tracking invariant E ⊆ XM, there exists a set
AM ⊂ XN

H ×P(XH)N such that all sequences of reference states x̄k ∈ XH and state
constraint sets Xk ⊂ XH satisfying (x̄k,Xk) ∈ AM for all k = 1, . . . , N results in
the existence of a curve xd : [0, T]→ XM satisfying:

ΠH, M(xd(t)) ∈ Xk ⊖ΠH, M(EL) for t ∈ [kT/N, (k + 1)T/N)

ΠH, M (xd (kT/N)) ∈ x̄k ⊕ EM

for some EM ⊆ XH.

Proof. We leverage the Bézier reachable polytopes construction from Section 6.2 to
prove this. From the construction of CX and CU , the solution curves satisfy (xd, ud) ∈
AL. From (6.6) — enforced in (7.2d) — we have ΠH, M(xd(t)) ∈ Xk ⊖ΠH, M(EL)
for t ∈ [kT/N, (k + 1)T/N). Letting EM = Bϵ(0), the constraint (6.11) enforces
ΠH, M (xd (kT/N)) ∈ x̄k ⊕ EM. Finally, we will produce AM as:

AM = {({x̄k}, {Xk}) ∈ XN
H × P(XH)N | (8.1)

L⃗(Xk)D⃗†
[
x⊤

k x⊤
k+1

]⊤
≤ h⃗(Xk) for k = 1, ..., N},

which reformulates the constraint (7.2d) into a linear constraint characterizing the
sets of admissible reference points x̄k.

These plans for the planning model of a 2D double integrator (as used on the hopping
robot), as well as a representation of the set EM is shown in Figure 6.4.

178

Figure 8.1: A snapshot of the experiments conducted with ARCHER, including
path planning, disturbance rejection, and hopping over rough terrain.

Theorem 8.3. Given a goal state xG ∈ XH, a constraint set X ⊂ XH and an initial
condition x0 ∈ XH, if the high level controller is feasible at t = 0 then there exists a
sequence of points {x̄k} with x̄k ∈ XH and convex sets {Xk} with Xk ⊆ XH which
satisfy x̄0 = x0, x̄N = xG, Xk ⊆ X , x̄k ∈ Xk, and ({x̄k}, {Xk}) ∈ AM.

Proof. We leverage the graph solve method developed in Section 7.1 to show this.
First, observe that if the graph solve in the previous section is feasible, it will return
a sequence of points {x̄k}N

k=1 with x̄0 = x0 to x̄N = xG which satisfy xk ∈ Xk

for k = 1, . . . , N . From the construction of Xk, we know that Xk ⊆ X . Finally,
from the construction and cut of the graph, we have that (x̄k, x̄k+1,Xk) ∈ AM for
all k.

An example of the graph solve in practice is seen in Figure 7.7. What good, though,
is a proof of being able to complete a task without actually doing so? Next, we

179

Figure 8.2: Vision-based nonconvex path planning showing the segmented occupied
space (red), segmented free space (green), convex polytope decomposition (green
polytopes) graph plan (red) and ARCHER trajectory (blue).

demonstrate the complete hierarchy in a number of outdoor experiments on the 3D
hopping robot ARCHER.

8.2 Experiment
We utilize the complete hierarchy to achieving long horizon nonconvex path plan-
ning. We elect to model the system as a graph over 2D position states. We create
the graph by sampling points in a grid and attempting to connect them with Bézier
curves of duration 0.5 s. Points are considered connected with an edge if they
satisfy the assumptions of the mid layer controller, i.e., ((x̄i, x̄j),XH) ∈ AM for all
pairs xi and xj . The graph cutting is implemented as a CUDA kernel to parallelize
computation on GPU. The edge cost is taken to be

∑
i ∥Pi+1 − Pi∥, which serves

as an upper bound on the path length of the Bézier curve from Property 2.49. In
the implementation, about 5000 nodes were sampled for the graph. The high layer
is capable of handling long term plans and highly nonconvex spaces, as it relies on
a discrete system representation (the graph) and search methods, which scale with
graph complexity rather than time, space, or nonconvexity.

180

Figure 8.3: As the scene is updated, the robot is able to replan path through the
available free space. Closed loop trajectories for the system are in light blue.

When running the system outdoors, or without the presence of the overhead obstacle
segmenting camera, the approach for environmental construction differs. The Intel
Realsense D435 camera, located on the front of the robot, as show in Figure 1.3,
captures RGBD images at the apex of each hop. Traversible regions of the RGB
image, such as sidewalk or brick walkway, are segmented using the Efficient Track-
Anything-Model [201]. The pose of the hopper is used to transform the RGBD
image into a point cloud, which is divided into free and occupied points by applying
the segmentation mask. The point cloud is binned vertically, mapping points onto
a 2D occupancy grid, which is sent to Algorithm 4 to construct the environment
representation. All computations are carried out on the on board Nvidia ORIN.

181

Figure 8.2 depicts the robot’s view of the environment, including the segmented ter-
rain and convex polytope decomposition. Figure 8.3 shows that as the environment
changes the robot is able to adapt its plan to navigate efficiently.

8.3 Summary
By properly abstracting the role of each layer of the hierarchy, we were able to provide
system-level guarantees with independently designed components. Furthermore, we
showed that these components satisfied the assumptions and guarantees that we set
out to, thereby enabling a layered architecture with guarantees. Finally, we saw the
complete architecture deployed on ARCHER, a highly underactuated 3D hopping
robot, in unstructured outdoor environments.

Chapter 9: Conclusion

Contents
9.1 Summary of Thesis . 183

9.2 Future Work . 183

9.3 Advice to Younger Students . 184

Be true to your passions, and the rest will follow.

183

9.1 Summary of Thesis
This thesis has developed a theory of layered control architectures, motivated by
the need for modular, scalable control strategies for dynamic robotic systems. By
formalizing layered architectures and their interfaces, we showed how independently
designed controllers can be composed to enable system-level guarantees. We then
specialized the discussion to address a common problem in robotics — long horizon,
highly constrained planning for dynamical systems, with application to legged robots
— and addressed it with high-level decision making, and low-level feedback. Along
the way, we have provided constructive controller synthesis techniques at each layer
and have avoided assuming the existence of functions or sets unless we have shown
a constructive method for generating them. Furthermore, we have used experiments
as our guiding light, helping us decide what tools are working and which should be
abandoned.

The efficacy of this perspective of control has been validated through extensive
experiments on a quadruped, biped, and hopping robot. These results demonstrate
that layered architectures are not only an engineering convenience, but provide a
principled approach to achieving efficient, feasible, and generalizable controller
design. As such, we conclude by reiterating that layered architectures are a powerful
tool for structured controller design.

9.2 Future Work
There are many, many research areas in robotics that are interesting and should be
pursued. I will focus on listing a few that, given the context of this thesis, would be
interesting to investigate:

• As we enter a paradigm of increasing parallel compute, there are opportunities
where control could benefit from leveraging the GPU besides just training large
models. Thinking about constructive areas to leverage this compute (as we
did in the graph cutting for the Bézier graphs) could offer orders of magnitude
speedup over parallel CPU implementations. There is a trade-off — GPUs
can run (the same) simple operation on large batches of data, and therefore
have a rigidity in what will benefit from their use. This constraint must be
considered when choosing application areas for hardware acceleration.

• Refining the areas where zeroth order (sampling based) and first order (gra-
dient based) optimization methods shine, both with and without learning and
in various application contexts.

184

• Exploring the connections between trajectory optimization methods and gen-
erative methods of reaching optima, like flow matching for diffusion [202].
See [203], [204] for inspiration.

• Incorporating perception into the controller synthesis problem as done in
[205], instead of leaving it as a least piece. Perception will be noisy, late, and
wrong, and only considering those challenges at the end of the design process
will fundamentally limit what can be achieved.

• As we move past pure locomotion as a field, the next frontier for humanoid
robotics is understanding how locomotion and manipulation should be paired.
The current solution of first walking, and then grabbing is a local minimum
— instead we should think forward to methods that co-design these tasks.

• We need to understand what it means to relax the complementarity constraint
in contact rich dynamics problems, especially as it pertains to controller
synthesis. See [71] for inspiration.

9.3 Advice to Younger Students
The process of the PhD is long and grueling, so you may as well enjoy it. You are
offered a lot of flexibility, both with your time and your research directions — use
this to your advantage. Along the way, don’t forget that your primary goal is to
learn. In terms of research, seek opportunities that you think will help you develop
the skills that you want to learn — there will always be questions to ask in the
directions you want to learn. Also, try (as best you can) to pursue research that you
truly find interesting. This is a good exercise in life in general, and will help keep
you motivated. Finally, don’t be afraid to break robots. As scary as it is, the only
way to find the boundary of performance is by pushing past it every once in a while.

185

Bibliography

[1] Humanoid robots run a Chinese half-marathon alongside flesh-and-blood
competitors, url: https://apnews.com/article/china-robot-half-
marathon-153c6823bd628625106ed26267874d21, 2025.

[2] K. Black, N. Brown, D. Driess, et al., π0: A vision-language-action flow
model for general robot control, 2024. arXiv: 2410.24164 [cs.LG]. [On-
line]. Available: https://arxiv.org/abs/2410.24164.

[3] Y. Nakahira, Q. Liu, T. J. Sejnowski, and J. C. Doyle, “Diversity-enabled
sweet spots in layered architectures and speed–accuracy trade-offs in senso-
rimotor control,” Proceedings of the National Academy of Sciences, vol. 118,
no. 22, e1916367118, 2021.

[4] D. Kahneman, Thinking, fast and slow. New York: Farrar, Straus and Giroux,
2011. [Online]. Available: https://www.amazon.de/Thinking-Fast-
Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_
nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7.

[5] H. Tsien, T. Adamson, and E. Knuth, “Automatic navigation of a long range
rocket vehicle,” Journal of the American Rocket Society, vol. 22, no. 4,
pp. 192–199, 1952.

[6] Apollo Guidance and Navigation : R-500 Space Navigation Guidance and
Control ... 2 volumes by C. S. Draper, Dr. W. Wrigley, D. G. on Kuenzig
Books, en-US. (visited on 04/10/2024).

[7] B. Kuipers, E. A. Feigenbaum, P. E. Hart, and N. J. Nilsson, “Shakey: From
conception to history,” AI Magazine, vol. 38, no. 1, pp. 88–103, 2017. doi:
10.1609/aimag.v38i1.2716. [Online]. Available: https://ojs.aaai.
org/aimagazine/index.php/aimagazine/article/view/2716.

[8] M. D. Mesarovic, D. Macko, and Y. Takahara, Theory of hierarchical, mul-
tilevel systems. Elsevier, 1970, vol. 68.

[9] G. J. Balas, “Flight control law design: An industry perspective,” Euro-
pean Journal of Control, vol. 9, no. 2, pp. 207–226, 2003, issn: 0947-3580.
doi: https://doi.org/10.3166/ejc.9.207- 226. [Online]. Avail-

https://apnews.com/article/china-robot-half-marathon-153c6823bd628625106ed26267874d21
https://apnews.com/article/china-robot-half-marathon-153c6823bd628625106ed26267874d21
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://www.amazon.de/Thinking-Fast-Slow-Daniel-Kahneman/dp/0374275637/ref=wl_it_dp_o_pdT1_nS_nC?ie=UTF8&colid=151193SNGKJT9&coliid=I3OCESLZCVDFL7
https://doi.org/10.1609/aimag.v38i1.2716
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2716
https://ojs.aaai.org/aimagazine/index.php/aimagazine/article/view/2716
https://doi.org/https://doi.org/10.3166/ejc.9.207-226

186

able: https://www.sciencedirect.com/science/article/pii/
S0947358003702763.

[10] S. Kuindersma, R. Deits, M. Fallon, et al., “Optimization-based locomotion
planning, estimation, and control design for the atlas humanoid robot,”
Autonomous Robots, vol. 40, pp. 429–455, 2016.

[11] A. Dixit, D. D. Fan, K. Otsu, S. Dey, A.-A. Agha-Mohammadi, and J. W.
Burdick, “Step: Stochastic traversability evaluation and planning for risk-
aware navigation; results from the darpa subterranean challenge,” IEEE
Transactions on Field Robotics, vol. 2, pp. 81–99, 2025. doi: 10.1109/
TFR.2024.3512433.

[12] N. Matni, A. D. Ames, and J. C. Doyle, Towards a Theory of Control Archi-
tecture: A quantitative framework for layered multi-rate control, arXiv:2401.15185
[cs, eess, math], Jan. 2024. [Online]. Available: http://arxiv.org/abs/
2401.15185 (visited on 04/02/2024).

[13] U. Rosolia, A. Singletary, and A. D. Ames, “Unified multirate control: From
low-level actuation to high-level planning,” IEEE Transactions on Automatic
Control, vol. 67, no. 12, pp. 6627–6640, 2022, Publisher: IEEE. [Online].
Available: https: / /ieeexplore .ieee .org /abstract /document /
9802791/ (visited on 04/01/2024).

[14] M. M. Jr., W. Compton, M. H. Cohen, and A. D. Ames, A contract theory
for layered control architectures, 2024. arXiv: 2409.14902 [eess.SY].
[Online]. Available: https://arxiv.org/abs/2409.14902.

[15] M. H. Cohen, T. G. Molnar, and A. D. Ames, “Safety-critical control for
autonomous systems: Control barrier functions via reduced-order models,”
Annual Reviews in Control, vol. 57, p. 100 947, 2024.

[16] G. Zardini, “Co-design of complex systems: From autonomy to future mo-
bility systems,” Ph.D. dissertation, ETH Zurich, 2023.

[17] D. Fridovich-Keil, S. L. Herbert, J. F. Fisac, S. Deglurkar, and C. J. Tomlin,
Planning, Fast and Slow: A Framework for Adaptive Real-Time Safe Trajec-
tory Planning, arXiv:1710.04731 [cs], Mar. 2018. doi: 10.48550/arXiv.
1710.04731. [Online]. Available: http://arxiv.org/abs/1710.04731
(visited on 04/02/2024).

[18] N. J. Nilsson, “A mobile automaton: An application of artificial intelli-
gence techniques,” en, Defense Technical Information Center, Fort Belvoir,
VA, Tech. Rep., Jan. 1969. doi: 10.21236/ADA459660. [Online]. Avail-
able: http://www.dtic.mil/docs/citations/ADA459660 (visited on
03/23/2023).

[19] J. Wang, T. Zhang, N. Ma, et al., “A survey of learning-based robot motion
planning,” en, IET Cyber-Systems and Robotics, vol. 3, no. 4, pp. 302–314,
2021, _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1049/csy2.12020,

https://www.sciencedirect.com/science/article/pii/S0947358003702763
https://www.sciencedirect.com/science/article/pii/S0947358003702763
https://doi.org/10.1109/TFR.2024.3512433
https://doi.org/10.1109/TFR.2024.3512433
http://arxiv.org/abs/2401.15185
http://arxiv.org/abs/2401.15185
https://ieeexplore.ieee.org/abstract/document/9802791/
https://ieeexplore.ieee.org/abstract/document/9802791/
https://arxiv.org/abs/2409.14902
https://arxiv.org/abs/2409.14902
https://doi.org/10.48550/arXiv.1710.04731
https://doi.org/10.48550/arXiv.1710.04731
http://arxiv.org/abs/1710.04731
https://doi.org/10.21236/ADA459660
http://www.dtic.mil/docs/citations/ADA459660

187

issn: 2631-6315. doi: 10.1049/csy2.12020. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1049/csy2.12020 (visited
on 05/19/2023).

[20] A. H. Qureshi, Y. Miao, A. Simeonov, and M. C. Yip, Motion Planning
Networks: Bridging the Gap Between Learning-based and Classical Motion
Planners, en, arXiv:1907.06013 [cs], Jun. 2020. [Online]. Available: http:
//arxiv.org/abs/1907.06013 (visited on 05/19/2023).

[21] M. Pfeiffer, M. Schaeuble, J. Nieto, R. Siegwart, and C. Cadena, “From per-
ception to decision: A data-driven approach to end-to-end motion planning
for autonomous ground robots,” en, in 2017 IEEE International Conference
on Robotics and Automation (ICRA), arXiv:1609.07910 [cs], May 2017,
pp. 1527–1533. doi: 10.1109/ICRA.2017.7989182. [Online]. Available:
http://arxiv.org/abs/1609.07910 (visited on 05/19/2023).

[22] M. J. Bency, A. H. Qureshi, and M. C. Yip, Neural Path Planning: Fixed
Time, Near-Optimal Path Generation via Oracle Imitation, en, arXiv:1904.11102
[cs], Apr. 2019. [Online]. Available: http://arxiv.org/abs/1904.
11102 (visited on 05/19/2023).

[23] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Perceptive
locomotion through nonlinear model-predictive control,” IEEE Transactions
on Robotics, vol. 39, no. 5, pp. 3402–3421, 2023.

[24] A. Isidori, “Elementary theory of nonlinear feedback for single-input single-
output systems,” en, in Nonlinear Control Systems, ser. Communications and
Control Engineering, A. Isidori, Ed., London: Springer, 1995, pp. 137–217,
isbn: 978-1-84628-615-5. doi: 10.1007/978-1-84628-615-5_4. (visited
on 01/30/2024).

[25] P. Kokotović and M. Arcak, “Constructive nonlinear control: A historical
perspective,” Automatica, vol. 37, no. 5, pp. 637–662, 2001.

[26] H. K. Khalil, Nonlinear systems; 3rd ed. Upper Saddle River, NJ: Prentice-
Hall, 2002, The book can be consulted by contacting: PH-AID: Wallet,
Lionel. [Online]. Available: https://cds.cern.ch/record/1173048.

[27] R. Sepulchre, M. Jankovic, and P. V. Kokotovic, Constructive nonlinear
control. Springer Science & Business Media, 2012.

[28] Z. Artstein, “Stabilization with relaxed controls,” Nonlinear Analysis: The-
ory, Methods & Applications, vol. 7, no. 11, pp. 1163–1173, 1983.

[29] E. D. Sontag, “A ‘universal’ construction of artstein’s theorem on nonlinear
stabilization,” Systems & Control Letters, vol. 13, no. 2, pp. 117–123, 1989.

[30] E. D. Sontag, “Smooth stabilization implies coprime factorization,” Trans-
actions on Automatic Control, vol. 34, no. 4, pp. 435–443, 1989.

[31] R. Freeman and P. V. Kokotovic, Robust nonlinear control design: state-
space and Lyapunov techniques. Birkhauser Basel, 1996.

https://doi.org/10.1049/csy2.12020
https://onlinelibrary.wiley.com/doi/abs/10.1049/csy2.12020
https://onlinelibrary.wiley.com/doi/abs/10.1049/csy2.12020
http://arxiv.org/abs/1907.06013
http://arxiv.org/abs/1907.06013
https://doi.org/10.1109/ICRA.2017.7989182
http://arxiv.org/abs/1609.07910
http://arxiv.org/abs/1904.11102
http://arxiv.org/abs/1904.11102
https://doi.org/10.1007/978-1-84628-615-5_4
https://cds.cern.ch/record/1173048

188

[32] A. D. Ames and M. Powell, “Towards the unification of locomotion and
manipulation through control Lyapunov functions and quadratic programs,”
in Control of Cyber-Physical Systems, Springer, 2013, pp. 219–240.

[33] S. Kolathaya, J. Reher, A. Hereid, and A. D. Ames, “Input to state stabiliz-
ing control Lyapunov functions for robust bipedal robotic locomotion,” in
American Control Conference (ACC), IEEE, 2018, pp. 2224–2230.

[34] S. Sastry, “Linearization by state feedback,” en, in Nonlinear Systems: Anal-
ysis, Stability, and Control, ser. Interdisciplinary Applied Mathematics, S.
Sastry, Ed., New York, NY: Springer, 1999, pp. 384–448, isbn: 978-1-4757-
3108-8. doi: 10.1007/978-1-4757-3108-8_9. (visited on 10/15/2023).

[35] M. Vukobratović and B. Borovac, “Zero-moment point—Thirty five years
of its life,” International Journal of Humanoid Robotics, vol. 1, no. 01,
pp. 157–173, 2004.

[36] M. H. Raibert, H. B. Brown, and M. Chepponis, “Experiments in balance
with a 3D one-legged hopping machine,” en, The International Journal of
Robotics Research, vol. 3, no. 2, pp. 75–92, Jun. 1984, Publisher: SAGE Pub-
lications Ltd STM, issn: 0278-3649. doi: 10.1177/027836498400300207.
(visited on 09/16/2022).

[37] S. Kajita, M. Morisawa, K. Miura, et al., “Biped walking stabilization based
on linear inverted pendulum tracking,” in 2010 IEEE/RSJ International
Conference on Intelligent Robots and Systems, IEEE, 2010, pp. 4489–4496.

[38] H. Geyer, A. Seyfarth, and R. Blickhan, “Compliant leg behavior explains
basic dynamics of walking and running,” Proceedings in Biological Sciences
/ The Royal Society, vol. 273, pp. 2861–7, Dec. 2006. doi: 10.1098/rspb.
2006.3637.

[39] R. J. Full and D. E. Koditschek, “Templates and anchors: Neuromechanical
hypotheses of legged locomotion on land,” Journal of Experimental Biology,
vol. 202, no. 23, pp. 3325–3332, 1999, Publisher: The Company of Biol-
ogists Ltd. [Online]. Available: https://journals.biologists.com/
jeb/article-abstract/202/23/3325/8334 (visited on 04/01/2024).

[40] E. Westervelt, J. Grizzle, and D. Koditschek, “Hybrid zero dynamics of pla-
nar biped walkers,” IEEE Transactions on Automatic Control, vol. 48, no. 1,
pp. 42–56, Jan. 2003, Conference Name: IEEE Transactions on Automatic
Control, issn: 1558-2523. doi: 10.1109/TAC.2002.806653. (visited on
03/15/2024).

[41] A. Hereid, E. A. Cousineau, C. M. Hubicki, and A. D. Ames, “3D dynamic
walking with underactuated humanoid robots: A direct collocation frame-
work for optimizing hybrid zero dynamics,” in 2016 IEEE International
Conference on Robotics and Automation (ICRA), IEEE, 2016, pp. 1447–
1454. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/7487279/ (visited on 04/02/2024).

https://doi.org/10.1007/978-1-4757-3108-8_9
https://doi.org/10.1177/027836498400300207
https://doi.org/10.1098/rspb.2006.3637
https://doi.org/10.1098/rspb.2006.3637
https://journals.biologists.com/jeb/article-abstract/202/23/3325/8334
https://journals.biologists.com/jeb/article-abstract/202/23/3325/8334
https://doi.org/10.1109/TAC.2002.806653
https://ieeexplore.ieee.org/abstract/document/7487279/
https://ieeexplore.ieee.org/abstract/document/7487279/

189

[42] Y. Gong, R. Hartley, X. Da, et al., “Feedback control of a Cassie bipedal
robot: Walking, standing, and riding a segway,” in American Control Con-
ference (ACC), IEEE, 2019, pp. 4559–4566.

[43] Q. Nguyen, X. Da, J. Grizzle, and K. Sreenath, “Dynamic walking on step-
ping stones with gait library and control barrier functions,” in Algorithmic
Foundations of Robotics XII, Springer, 2020, pp. 384–399.

[44] J. Reher and A. D. Ames, “Inverse dynamics control of compliant hybrid zero
dynamic walking,” in International Conference on Robotics and Automation
(ICRA), IEEE, 2021, pp. 2040–2047.

[45] X. Da and J. Grizzle, “Combining trajectory optimization, supervised ma-
chine learning, and model structure for mitigating the curse of dimensionality
in the control of bipedal robots,” en, The International Journal of Robotics
Research, vol. 38, no. 9, pp. 1063–1097, Aug. 2019, issn: 0278-3649, 1741-
3176. doi: 10.1177/0278364919859425. (visited on 04/02/2024).

[46] F. Allgower, R. Findeisen, Z. K. Nagy, et al., “Nonlinear model predic-
tive control: From theory to application,” J.-Chinese Institute Of Chemical
Engineers, vol. 35, no. 3, pp. 299–316, 2004.

[47] F. Allgöwer and A. Zheng, Nonlinear model predictive control. Birkhäuser,
2012, vol. 26.

[48] F. Borrelli, A. Bemporad, and M. Morari, Predictive control for linear and
hybrid systems. Cambridge University Press, 2017.

[49] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Percep-
tive locomotion through nonlinear model-predictive control,” IEEE Trans-
actions on Robotics, 2023, Publisher: IEEE. [Online]. Available: https:
//ieeexplore.ieee.org/abstract/document/10138309/ (visited on
04/01/2024).

[50] J. Di Carlo, P. M. Wensing, B. Katz, G. Bledt, and S. Kim, “Dynamic
locomotion in the MIT Cheetah 3 through convex model-predictive con-
trol,” in International Conference on Intelligent Robots and Systems (IROS),
IEEE/RSJ, 2018, pp. 1–9.

[51] J.-P. Sleiman, F. Farshidian, M. V. Minniti, and M. Hutter, “A unified MPC
framework for whole-body dynamic locomotion and manipulation,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 4688–4695, 2021.

[52] P. Falcone, F. Borrelli, J. Asgari, H. E. Tseng, and D. Hrovat, “Predictive
active steering control for autonomous vehicle systems,” Transactions on
Control Systems Technology, vol. 15, no. 3, pp. 566–580, 2007.

[53] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V. Kolmanovsky, “The de-
velopment of model predictive control in automotive industry: A survey,”
in International Conference on Control Applications, IEEE, 2012, pp. 295–
302.

https://doi.org/10.1177/0278364919859425
https://ieeexplore.ieee.org/abstract/document/10138309/
https://ieeexplore.ieee.org/abstract/document/10138309/

190

[54] P. F. Lima, G. C. Pereira, J. Mårtensson, and B. Wahlberg, “Experimental
validation of model predictive control stability for autonomous driving,”
Control Engineering Practice, vol. 81, pp. 244–255, 2018.

[55] S. Bengea, A. Kelman, F. Borrelli, R. Taylor, and S. Narayanan, “Model
predictive control for mid-size commercial building hvac: Implementation,
results and energy savings,” in International Conference on Building Energy
and Environment, 2012, pp. 979–986.

[56] G. Serale, M. Fiorentini, A. Capozzoli, D. Bernardini, and A. Bemporad,
“Model predictive control (MPC) for enhancing building and hvac system
energy efficiency: Problem formulation, applications and opportunities,”
Energies, vol. 11, no. 3, p. 631, 2018.

[57] E. T. Maddalena, Y. Lian, and C. N. Jones, “Data-driven methods for building
control—a review and promising future directions,” Control Engineering
Practice, vol. 95, p. 104 211, 2020.

[58] U. Rosolia and F. Borrelli, “Learning how to autonomously race a car: A
predictive control approach,” Transactions on Control Systems Technology,
vol. 28, no. 6, pp. 2713–2719, 2019.

[59] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous
racing of 1: 43 scale rc cars,” Optimal Control Applications and Methods,
vol. 36, no. 5, pp. 628–647, 2015.

[60] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive
control using gaussian process regression,” Transactions on Control Systems
Technology, vol. 28, no. 6, pp. 2736–2743, 2019.

[61] A. Carvalho, Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “Predictive
control of an autonomous ground vehicle using an iterative linearization ap-
proach,” in International Conference on Intelligent Transportation Systems
(ITSC), IEEE, 2013, pp. 2335–2340.

[62] P. M. Wensing, M. Posa, Y. Hu, A. Escande, N. Mansard, and A. Del Prete,
“Optimization-based control for dynamic legged robots,” IEEE Transactions
on Robotics, vol. 40, pp. 43–63, 2023.

[63] M. Y. Galliker, N. Csomay-Shanklin, R. Grandia, et al., Bipedal locomo-
tion with nonlinear model predictive control: Online gait generation using
whole-body dynamics, Publication Title: arXiv preprint arXiv:2203.07429,
2022. [Online]. Available: https://ieeexplore.ieee.org/abstract/
document/10000132/ (visited on 04/01/2024).

[64] N. Csomay-Shanklin, V. D. Dorobantu, and A. D. Ames, “Nonlinear model
predictive control of a 3D hopping robot: Leveraging lie group integrators for
dynamically stable behaviors,” in 2023 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2023, pp. 12 106–12 112. (visited
on 04/01/2024).

https://ieeexplore.ieee.org/abstract/document/10000132/
https://ieeexplore.ieee.org/abstract/document/10000132/

191

[65] S. Kuindersma. “Recent progress on atlas, the world’s most dynamic hu-
manoid robot.” Accessed: 2025-04-22. (2023), [Online]. Available: https:
//www.youtube.com/watch?v=EGABAx52GKI.

[66] C. Khazoom, S. Hong, M. Chignoli, E. Stanger-Jones, and S. Kim, “Tailoring
solution accuracy for fast whole-body model predictive control of legged
robots,” preprint arXiv:2407.10789, 2024. arXiv: 2403.03995 [cs.RO].

[67] H. Li and P. M. Wensing, “Cafe-mpc: A cascaded-fidelity model pre-
dictive control framework with tuning-free whole-body control,” preprint
arXiv:2403.03995, 2024. arXiv: 2403.03995 [cs.RO].

[68] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
in Proceedings of the International Conference on Learning Representa-
tions, 2016.

[69] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the wild,”
Science Robotics, vol. 7, no. 62, eabk2822, 2022.

[70] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath, “Re-
inforcement learning for versatile, dynamic, and robust bipedal locomotion
control,” preprint arXiv:2401.16889, 2024. arXiv: 2401.16889 [cs.RO].

[71] H. J. Suh, M. Simchowitz, K. Zhang, and R. Tedrake, “Do differentiable
simulators give better policy gradients?” In International Conference on Ma-
chine Learning, Proceedings of Machine Learning Research, 2022, pp. 20 668–
20 696.

[72] G. Pappas, G. Lafferriere, and S. Sastry, “Hierarchically consistent control
systems,” IEEE Transactions on Automatic Control, vol. 45, no. 6, pp. 1144–
1160, 2000. doi: 10.1109/9.863598.

[73] A. Girard and G. J. Pappas, “Hierarchical control using approximate simu-
lation relations,” in Proceedings of the 45th IEEE Conference on Decision
and Control, 2006, pp. 264–269. doi: 10.1109/CDC.2006.377051.

[74] A. van der Schaft, “Equivalence of dynamical systems by bisimulation,”
IEEE Transactions on Automatic Control, vol. 49, no. 12, pp. 2160–2172,
2004. doi: 10.1109/TAC.2004.838497.

[75] J. Rawlings, D. Mayne, and M. Diehl, Model Predictive Control: Theory,
Computation, and Design. Nob Hill Publishing, 2017, isbn: 9780975937730.
[Online]. Available: https://books.google.com/books?id=MrJctAEACAAJ.

[76] D. Q. Mayne, M. M. Seron, and S. V. Raković, “Robust model predictive
control of constrained linear systems with bounded disturbances,” Automat-
ica, vol. 41, no. 2, pp. 219–224, 2005.

https://www.youtube.com/watch?v=EGABAx52GKI
https://www.youtube.com/watch?v=EGABAx52GKI
https://arxiv.org/abs/2403.03995
https://arxiv.org/abs/2403.03995
https://arxiv.org/abs/2401.16889
https://doi.org/10.1109/9.863598
https://doi.org/10.1109/CDC.2006.377051
https://doi.org/10.1109/TAC.2004.838497
https://books.google.com/books?id=MrJctAEACAAJ

192

[77] M. Chen, S. L. Herbert, H. Hu, et al., “Fastrack: A modular framework for
real-time motion planning and guaranteed safe tracking,” IEEE Transactions
on Automatic Control, vol. 66, no. 12, pp. 5861–5876, 2021. doi: 10.1109/
TAC.2021.3059838.

[78] E. D. Sontag, “Input to state stability: Basic concepts and results,” in Non-
linear and Optimal Control Theory, Springer, 2008, pp. 163–220.

[79] N. Csomay-Shanklin, A. J. Taylor, U. Rosolia, and A. D. Ames, “Multi-
rate planning and control of uncertain nonlinear systems: Model predictive
control and control Lyapunov functions,” arXiv:2204.00152, 2022.

[80] A. Wu, S. Sadraddini, and R. Tedrake, “R3t: Rapidly-exploring random
reachable set tree for optimal kinodynamic planning of nonlinear hybrid sys-
tems,” in 2020 IEEE International Conference on Robotics and Automation
(ICRA), 2020, pp. 4245–4251. doi: 10.1109/ICRA40945.2020.9196802.

[81] Y. Gao, A. Gray, H. E. Tseng, and F. Borrelli, “A tube-based robust nonlinear
predictive control approach to semiautonomous ground vehicles,” Vehicle
System Dynamics, vol. 52, no. 6, pp. 802–823, 2014.

[82] M. Kögel and R. Findeisen, “Discrete-time robust model predictive control
for continuous-time nonlinear systems,” in American Control Conference
(ACC), IEEE, 2015, pp. 924–930.

[83] S. Yu, C. Maier, H. Chen, and F. Allgöwer, “Tube mpc scheme based on
robust control invariant set with application to lipschitz nonlinear systems,”
Systems & Control Letters, vol. 62, no. 2, pp. 194–200, 2013.

[84] S. Singh, A. Majumdar, J.-J. Slotine, and M. Pavone, “Robust online motion
planning via contraction theory and convex optimization,” in International
Conference on Robotics and Automation (ICRA), IEEE, 2017, pp. 5883–
5890.

[85] J. Köhler, R. Soloperto, M. A. Müller, and F. Allgöwer, “A computationally
efficient robust model predictive control framework for uncertain nonlinear
systems,” Transactions on Automatic Control, vol. 66, no. 2, pp. 794–801,
2020.

[86] S. Singh, M. Chen, S. L. Herbert, C. J. Tomlin, and M. Pavone, “Robust
tracking with model mismatch for fast and safe planning: An SOS optimiza-
tion approach,” in International Workshop on the Algorithmic Foundations
of Robotics (WAFR), Springer, 2018, pp. 545–564.

[87] H. Yin, M. Bujarbaruah, M. Arcak, and A. Packard, “Optimization based
planner–tracker design for safety guarantees,” in American Control Confer-
ence (ACC), IEEE, 2020, pp. 5194–5200.

[88] U. Rosolia, A. Singletary, and A. D. Ames, “Unified multi-rate control:
From low-level actuation to high-level planning,” Transactions on Automatic
Control, 2022.

https://doi.org/10.1109/TAC.2021.3059838
https://doi.org/10.1109/TAC.2021.3059838
https://doi.org/10.1109/ICRA40945.2020.9196802

193

[89] U. Rosolia and A. D. Ames, “Multi-rate control design leveraging control
barrier functions and model predictive control policies,” Control Systems
Letters, vol. 5, no. 3, pp. 1007–1012, 2021. doi: 10.1109/LCSYS.2020.
3008326.

[90] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion plan-
ning,” Journal of the Association for Computing Machinery, vol. 40, no. 5,
pp. 1048–1066, Nov. 1993, issn: 0004-5411.

[91] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” The
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400,
May 2001, issn: 0278-3649, 1741-3176.

[92] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically op-
timal motion planning for robots with linear dynamics,” en, in 2013 IEEE
International Conference on Robotics and Automation, Karlsruhe, Germany:
IEEE, May 2013, pp. 5054–5061. doi: 10.1109/ICRA.2013.6631299.
[Online]. Available: http://ieeexplore.ieee.org/document/6631299/
(visited on 01/30/2023).

[93] E. Schmerling and M. Pavone, “Kinodynamic Planning,” in Encyclopedia of
Robotics, M. H. Ang, O. Khatib, and B. Siciliano, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2021, pp. 1–9, isbn: 978-3-642-41610-1.

[94] S. M. LaValle, “Rapidly-exploring random trees : A new tool for path
planning,” The Annual Research Report, 1998.

[95] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling
for planning under differential constraints,” in 2009 IEEE International
Conference on Robotics and Automation, 2009, pp. 2859–2865. doi: 10.
1109/ROBOT.2009.5152874.

[96] J. A. Reeds and L. A. Shepp, “Optimal paths for a car that goes both
forwards and backwards.,” en, Pacific Journal of Mathematics, Oct. 1990.
doi: 10.2140/pjm.1990.145.367. [Online]. Available: https://www.
scinapse.io/papers/1971998222 (visited on 05/19/2023).

[97] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling
for planning under differential constraints,” in 2009 IEEE International
Conference on Robotics and Automation, ser. 1, ISSN: 1050-4729, May
2009, pp. 2859–2865. doi: 10.1109/ROBOT.2009.5152874.

[98] A. Wu, S. Sadraddini, and R. Tedrake, “R3T: Rapidly-exploring random
reachable set tree for optimal kinodynamic planning of nonlinear hybrid
systems,” in 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA), ser. 1, ISSN: 2577-087X, May 2020, pp. 4245–4251. doi:
10.1109/ICRA40945.2020.9196802.

[99] D. Ioan, I. Prodan, S. Olaru, F. Stoican, and S.-I. Niculescu, “Mixed-integer
programming in motion planning,” Annual Reviews in Control, vol. 51,
pp. 65–87, 2021.

https://doi.org/10.1109/LCSYS.2020.3008326
https://doi.org/10.1109/LCSYS.2020.3008326
https://doi.org/10.1109/ICRA.2013.6631299
http://ieeexplore.ieee.org/document/6631299/
https://doi.org/10.1109/ROBOT.2009.5152874
https://doi.org/10.1109/ROBOT.2009.5152874
https://doi.org/10.2140/pjm.1990.145.367
https://www.scinapse.io/papers/1971998222
https://www.scinapse.io/papers/1971998222
https://doi.org/10.1109/ROBOT.2009.5152874
https://doi.org/10.1109/ICRA40945.2020.9196802

194

[100] R. Deits and R. Tedrake, “Efficient mixed-integer planning for UAVs in clut-
tered environments,” en, in 2015 IEEE International Conference on Robotics
and Automation (ICRA), ser. 1, Seattle, WA, USA: IEEE, May 2015, pp. 42–
49, isbn: 978-1-4799-6923-4. doi: 10.1109/ICRA.2015.7138978. [On-
line]. Available: http://ieeexplore.ieee.org/document/7138978/
(visited on 02/22/2023).

[101] T. Marcucci, J. Umenberger, P. A. Parrilo, and R. Tedrake, “Shortest paths
in graphs of convex sets,” arXiv:2101.11565, 2021.

[102] T. Marcucci, M. Petersen, D. von Wrangel, and R. Tedrake, Motion Planning
around Obstacles with Convex Optimization, en, arXiv:2205.04422 [cs],
May 2022. [Online]. Available: http://arxiv.org/abs/2205.04422
(visited on 01/30/2023).

[103] J. Lee, E. Bakolas, and L. Sentis, “An efficient and direct method for trajec-
tory optimization of robots constrained by contact kinematics and forces,”
Autonomous Robots, vol. 45, pp. 135–153, 2021.

[104] S. Stoneman and R. Lampariello, “Embedding nonlinear optimization in rrt
for optimal kinodynamic planning,” in 53rd IEEE Conference on Decision
and Control, IEEE, 2014, pp. 3737–3744.

[105] P. Fernbach, S. Tonneau, A. Del Prete, and M. Taix, “A kinodynamic
steering-method for legged multi-contact locomotion,” in 2017 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), IEEE,
2017, pp. 3701–3707.

[106] E. Ambrose, W. Ma, C. Hubicki, and A. D. Ames, “Toward benchmarking
locomotion economy across design configurations on the modular robot:
Amber-3m,” in 2017 IEEE Conference on Control Technology and Applica-
tions (CCTA), 2017, pp. 1270–1276. doi: 10.1109/CCTA.2017.8062633.

[107] E. R. Ambrose, “Creating ARCHER: A 3D Hopping Robot with Flywheels
for Attitude Control,” en, Ph.D. dissertation, California Institute of Technol-
ogy, 2022. doi: 10.7907/gbts-va63. (visited on 09/16/2022).

[108] K. Astrom and R. Murray, Feedback Systems: An Introduction for Scientists
and Engineers, Second Edition. Princeton University Press, 2021, isbn:
9780691193984. [Online]. Available: https : / / books . google . com /
books?id=l50DEAAAQBAJ.

[109] S. S. Sastry, Nonlinear Systems: Analysis, Stability and Control. NY: Springer,
1999.

[110] M. Nagumo, “Ueber die lage der integralkurven gewoehnlicher differential-
gleichungen,” Proceedings of the Physico-Mathematical Society of Japan.
3rd Series, vol. 24, pp. 551–559, 1942.

https://doi.org/10.1109/ICRA.2015.7138978
http://ieeexplore.ieee.org/document/7138978/
http://arxiv.org/abs/2205.04422
https://doi.org/10.1109/CCTA.2017.8062633
https://doi.org/10.7907/gbts-va63
https://books.google.com/books?id=l50DEAAAQBAJ
https://books.google.com/books?id=l50DEAAAQBAJ

195

[111] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier func-
tion based quadratic programs for safety critical systems,” Transactions on
Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2017.

[112] A. Ames, J. Grizzle, and P. Tabuada, “Control barrier function based
quadratic programs with application to adaptive cruise control,” in Con-
ference on Decision & Control (CDC), IEEE, 2014, pp. 6271–6278.

[113] M. Spivak, Calculus on manifolds: a modern approach to classical theorems
of advanced calculus (Mathematics monograph series), en. CRC Press,
Taylor & Francis Group, 2018, isbn: 978-0-8053-9021-6.

[114] A. D. Ames and I. Poulakakis, “Hybrid zero dynamics control of legged
robots,” Bioinspired Legged Locomotion: Models, Concepts, Control and
Applications, pp. 292–331, 2017.

[115] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for en-
forcing high relative-degree safety-critical constraints,” in American Control
Conference (ACC), IEEE, 2016, pp. 322–328.

[116] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames, “A control barrier per-
spective on episodic learning via projection-to-state safety,” IEEE Control
Systems Letters, vol. 5, no. 3, pp. 1019–1024, 2021.

[117] W. F. Ames and B. Pachpatte, Inequalities for differential and integral
equations. Elsevier, 1997, vol. 197.

[118] J. Nocedal and S. J. Wright, Numerical optimization. Springer.

[119] M. Kamermans, “A primer on Bézier curves,” (online book), 2020. [Online].
Available: https://pomax.github.io/bezierinfo/.

[120] N. Csomay-Shanklin and A. D. Ames, “Bezier reachable polytopes: Efficient
certificates for robust motion planning with layered architectures,” arXiv
preprint arXiv:2411.13506, 2024.

[121] T. Marcucci, P. Nobel, R. Tedrake, and S. Boyd, Fast Path Planning Through
Large Collections of Safe Boxes, en, arXiv:2305.01072 [cs, eess], May 2023.
[Online]. Available: http://arxiv.org/abs/2305.01072 (visited on
05/19/2023).

[122] Autonomy Talks, Autonomy Talks - Animesh Garg: Building Blocks of
Generalizable Autonomy: Duality of Discovery&Bias, Nov. 2022. [Online].
Available: https://www.youtube.com/watch?v=oe9DUvI_lUU (visited
on 04/03/2024).

[123] R. Bellman, “Dynamic programming,” Princeton University Press, 1957.

[124] I. Radosavovic, T. Xiao, B. Zhang, T. Darrell, J. Malik, and K. Sreenath,
“Real-world humanoid locomotion with reinforcement learning,” Science
Robotics, vol. 9, no. 89, eadi9579, 2024.

https://pomax.github.io/bezierinfo/
http://arxiv.org/abs/2305.01072
https://www.youtube.com/watch?v=oe9DUvI_lUU

196

[125] T. He, J. Gao, W. Xiao, et al., “Asap: Aligning simulation and real-world
physics for learning agile humanoid whole-body skills,” arXiv preprint
arXiv:2502.01143, 2025.

[126] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi, “Agile but safe: Learning
collision-free high-speed legged locomotion,” arXiv preprint arXiv:2401.17583,
2024.

[127] Y. Chen, M. Ahmadi, and A. D. Ames, “Optimal safe controller synthesis: A
density function approach,” in 2020 American Control Conference (ACC),
IEEE, 2020, pp. 5407–5412.

[128] L. Chisci, J. Rossiter, and G. Zappa, “Systems with persistent disturbances:
Predictive control with restricted constraints,” Automatica, vol. 37, no. 7,
pp. 1019–1028, 2001, issn: 0005-1098. doi: https://doi.org/10.
1016/S0005-1098(01)00051- 6. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0005109801000516.

[129] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi reach-
ability: A brief overview and recent advances,” in 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), IEEE, 2017, pp. 2242–2253.

[130] P. O. Scokaert and D. Q. Mayne, “Min-max feedback model predictive
control for constrained linear systems,” IEEE Transactions on Automatic
control, vol. 43, no. 8, pp. 1136–1142, 1998.

[131] D. Mayne, M. Seron, and S. Raković, “Robust model predictive control of
constrained linear systems with bounded disturbances,” Automatica, vol. 41,
no. 2, pp. 219–224, 2005, issn: 0005-1098. doi: https://doi.org/10.
1016/j.automatica.2004.08.019. [Online]. Available: https://www.
sciencedirect.com/science/article/pii/S0005109804002870.

[132] J. Primbs, V. Nevistic, and J. Doyle, “A receding horizon generalization of
pointwise min-norm controllers,” IEEE Transactions on Automatic Control,
vol. 45, no. 5, pp. 898–909, May 2000, Conference Name: IEEE Transactions
on Automatic Control, issn: 1558-2523. doi: 10.1109/9.855550.

[133] P. Tabuada, Verification and control of hybrid systems: A symbolic approach.
Springer Science & Business Media, 2009.

[134] Quadrupedal robotic walking on sloped terrains. https://youtu.be/
uJedboyzDjc.

[135] M. Tucker, E. Novoseller, C. Kann, et al., “Preference-based learning for
exoskeleton gait optimization,” in 2020 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2020, pp. 2351–2357.

[136] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly expo-
nentially stabilizing control Lyapunov functions and hybrid zero dynamics,”
IEEE Transactions on Automatic Control, vol. 59, no. 4, pp. 876–891, 2014.
doi: 10.1109/TAC.2014.2299335.

https://doi.org/https://doi.org/10.1016/S0005-1098(01)00051-6
https://doi.org/https://doi.org/10.1016/S0005-1098(01)00051-6
https://www.sciencedirect.com/science/article/pii/S0005109801000516
https://www.sciencedirect.com/science/article/pii/S0005109801000516
https://doi.org/https://doi.org/10.1016/j.automatica.2004.08.019
https://doi.org/https://doi.org/10.1016/j.automatica.2004.08.019
https://www.sciencedirect.com/science/article/pii/S0005109804002870
https://www.sciencedirect.com/science/article/pii/S0005109804002870
https://doi.org/10.1109/9.855550
https://youtu.be/uJedboyzDjc
https://youtu.be/uJedboyzDjc
https://doi.org/10.1109/TAC.2014.2299335

197

[137] K. Galloway, K. Sreenath, A. D. Ames, and J. W. Grizzle, “Torque satu-
ration in bipedal robotic walking through control Lyapunov function-based
quadratic programs,” IEEE Access, vol. 3, pp. 323–332, 2015.

[138] J. Reher, C. Kann, and A. D. Ames, An inverse dynamics approach to control
Lyapunov functions, 2020. arXiv: 1910.10824 [cs.RO].

[139] M. Tucker, M. Cheng, E. Novoseller, et al., “Human preference-based learn-
ing for high-dimensional optimization of exoskeleton walking gaits,” in
2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2020.

[140] Learning controller gains on bipedal walking robots via user preferences.
https://youtu.be/jMX5a_6Xcuw?si=w9KSizYj6S16A66F.

[141] A. J. Taylor, V. D. Dorobantu, H. M. Le, Y. Yue, and A. D. Ames, “Episodic
learning with control lyapunov functions for uncertain robotic systems,” in
International Conference on Intelligent Robots and Systems (IROS), IEEE,
2019, pp. 6878–6884.

[142] A. J. Taylor, A. Singletary, Y. Yue, and A. D. Ames, “Learning for safety criti-
cal control with control barrier functions,” arXiv preprint arXiv:1912.10099,
2019.

[143] R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered safety
for legged robots via control barrier functions and model predictive control,”
arXiv preprint arXiv:2011.00032, 2020.

[144] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for solving
contact dynamics,” IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 895–902, 2018.

[145] Episodic learning for safe bipedal locomotion with control barrier functions
and projection-to-state safety, https://vimeo.com/481809664.

[146] Learning Code, https://github.com/noelc-s/amber_learning.

[147] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Mor-
ris, Feedback Control of Dynamic Bipedal Robot Locomotion. Taylor &
Francis/CRC Press, 2007.

[148] K. Sreenath, H.-W. Park, I. Poulakakis, and J. W. Grizzle, “A compliant
hybrid zero dynamics controller for stable, efficient and fast bipedal walking
on mabel,” The International Journal of Robotics Research, vol. 30, no. 9,
pp. 1170–1193, 2011.

[149] J. Reher, W.-L. Ma, and A. D. Ames, “Dynamic walking with compliance
on a cassie bipedal robot,” in European Control Conference (ECC), IEEE,
2019, pp. 2589–2595.

https://arxiv.org/abs/1910.10824
https://youtu.be/jMX5a_6Xcuw?si=w9KSizYj6S16A66F
https://vimeo.com/481809664
https://github.com/noelc-s/amber_learning

198

[150] A. Hereid, S. Kolathaya, M. S. Jones, J. Van Why, J. W. Hurst, and A. D.
Ames, “Dynamic multi-domain bipedal walking with atrias through slip
based human-inspired control,” in Proceedings of the 17th International
Conference on Hybrid Systems: Computation and Control, 2014, pp. 263–
272.

[151] Preference-based learning for user-guided hzd gait generation on bipedal
robots, https://youtu.be/rLJ-m65F6C4.

[152] Supplementary website featuring full-length experimental videos. https:
//maegant.github.io/ICRA2021-LearningHZD/.

[153] J. B. Rawlings, D. Q. Mayne, and M. Diehl, Model predictive control: theory,
computation, and design. Nob Hill Publishing Madison, WI, 2017, vol. 2.

[154] M. Diehl, H. G. Bock, H. Diedam, and P.-B. Wieber, “Fast direct multiple
shooting algorithms for optimal robot control,” in Fast Motions in Biome-
chanics and Robotics, Springer, 2006, pp. 65–93.

[155] C. Feller and C. Ebenbauer, “Relaxed logarithmic barrier function based
model predictive control of linear systems,” Transactions on Automatic
Control, vol. 62, no. 3, pp. 1223–1238, 2016.

[156] OCS2: An open source library for optimal control of switched systems,
[Online]. Available: https://github.com/leggedrobotics/ocs2.

[157] J. Carpentier, G. Saurel, G. Buondonno, et al., “The Pinocchio C++ library:
A fast and flexible implementation of rigid body dynamics algorithms and
their analytical derivatives,” in International Symposium on System Integra-
tion (SII), IEEE/SICE, 2019, pp. 614–619.

[158] B. M. Bell, “CppAD: A package for C++ algorithmic differentiation,” Com-
putational Infrastructure for Operations Research, vol. 57, no. 10, 2012.

[159] F. Farshidian, M. Neunert, A. W. Winkler, G. Rey, and J. Buchli, “An effi-
cient optimal planning and control framework for quadrupedal locomotion,”
in International Conference on Robotics and Automation (ICRA), IEEE,
2017, pp. 93–100.

[160] C. Mastalli, R. Budhiraja, W. Merkt, et al., “Crocoddyl: An efficient and ver-
satile framework for multi-contact optimal control,” in International Con-
ference on Robotics and Automation (ICRA), IEEE, 2020, pp. 2536–2542.

[161] C. D. Bellicoso, F. Jenelten, P. Fankhauser, C. Gehring, J. Hwangbo, and
M. Hutter, “Dynamic locomotion and whole-body control for quadrupedal
robots,” in International Conference on Intelligent Robots and Systems
(IROS), IEEE/RSJ, 2017, pp. 3359–3365.

[162] H. Ferrolho, V. Ivan, W. Merkt, I. Havoutis, and S. Vijayakumar, “Inverse dy-
namics vs. forward dynamics in direct transcription formulations for trajec-
tory optimization,” in International Conference on Robotics and Automation
(ICRA), IEEE, 2021, pp. 12 752–12 758.

https://youtu.be/rLJ-m65F6C4
https://maegant.github.io/ICRA2021-LearningHZD/
https://maegant.github.io/ICRA2021-LearningHZD/
https://github.com/leggedrobotics/ocs2

199

[163] D. Q. Mayne, J. B. Rawlings, C. V. Rao, and P. O. M. Scokaert, “Constrained
model predictive control: Stability and optimality,” Automatica, vol. 36,
no. 6, pp. 789–814, 2000.

[164] D. Q. Mayne, “Model predictive control: Recent developments and future
promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[165] A. Hereid and A. D. Ames, “Frost∗: Fast robot optimization and simula-
tion toolkit,” in International Conference on Intelligent Robots and Systems
(IROS), IEEE/RSJ, 2017, pp. 719–726.

[166] A. D. Ames, “Human-inspired control of bipedal walking robots,” Transac-
tions on Automatic Control, vol. 59, no. 5, pp. 1115–1130, 2014.

[167] Bipedal locomotion with nonlinear model predictive control, https://
youtu.be/3g8ZNsCWdOA.

[168] J. Stillwell, “The matrix logarithm,” en, in Naive Lie Theory, ser. Under-
graduate Texts in Mathematics, J. Stillwell, Ed., New York, NY: Springer,
2008, pp. 139–159, isbn: 978-0-387-78215-7. doi: 10.1007/978-0-387-
78214-0_7. [Online]. Available: https://doi.org/10.1007/978-0-
387-78214-0_7 (visited on 09/14/2022).

[169] J. Solà, J. Deray, and D. Atchuthan, A micro Lie theory for state estimation
in robotics, en, arXiv:1812.01537 [cs], Dec. 2021. (visited on 07/27/2022).

[170] Robust agility via learned zero dynamics policies: 3D hopping. https:
//vimeo.com/923800815.

[171] E. Todorov, T. Erez, and Y. Tassa, “MuJoCo: A physics engine for model-
based control,” in 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems, ISSN: 2153-0866, Oct. 2012, pp. 5026–5033. doi:
10.1109/IROS.2012.6386109.

[172] Code, 2024. [Online]. Available: https://github.com/ivandariojr/
LearnedZeroDynamicsPolicies.

[173] A. D. Ames, P. Tabuada, A. Jones, et al., “First steps toward formal con-
troller synthesis for bipedal robots with experimental implementation,” en,
Nonlinear Analysis: Hybrid Systems, vol. 25, pp. 155–173, Aug. 2017, issn:
1751570X. doi: 10.1016/j.nahs.2017.01.002. [Online]. Available:
https://linkinghub.elsevier.com/retrieve/pii/S1751570X1730002X
(visited on 12/05/2021).

[174] I. D. J. Rodriguez, A. D. Ames, and Y. Yue, Lyanet: A Lyapunov framework
for training neural odes, 2022. doi: 10 . 48550 / ARXIV . 2202 . 02526.
[Online]. Available: https://arxiv.org/abs/2202.02526.

[175] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based quadratic
programs with application to bipedal robotic walking,” in 2015 American
Control Conference (ACC), IEEE, 2015, pp. 4542–4548.

https://youtu.be/3g8ZNsCWdOA
https://youtu.be/3g8ZNsCWdOA
https://doi.org/10.1007/978-0-387-78214-0_7
https://doi.org/10.1007/978-0-387-78214-0_7
https://doi.org/10.1007/978-0-387-78214-0_7
https://doi.org/10.1007/978-0-387-78214-0_7
https://vimeo.com/923800815
https://vimeo.com/923800815
https://doi.org/10.1109/IROS.2012.6386109
https://github.com/ivandariojr/LearnedZeroDynamicsPolicies
https://github.com/ivandariojr/LearnedZeroDynamicsPolicies
https://doi.org/10.1016/j.nahs.2017.01.002
https://linkinghub.elsevier.com/retrieve/pii/S1751570X1730002X
https://doi.org/10.48550/ARXIV.2202.02526
https://arxiv.org/abs/2202.02526

200

[176] J. E. Pratt and S. V. Drakunov, “Derivation and application of a conserved
orbital energy for the inverted pendulum bipedal walking model,” in Pro-
ceedings 2007 IEEE International Conference on Robotics and Automation,
IEEE, 2007, pp. 4653–4660.

[177] R. T. Chen, Y. Rubanova, J. Bettencourt, and D. K. Duvenaud, “Neural
ordinary differential equations,” Advances in Neural Information Processing
Systems, vol. 31, 2018.

[178] Learning to walk by enforcing forward invariance, https://www.youtube.
com/watch?v=8TeXd0AYtpA.

[179] J. Hwangbo, J. Lee, and M. Hutter, “Per-contact iteration method for solving
contact dynamics,” IEEE Robotics and Automation Letters, vol. 3, no. 2,
pp. 895–902, 2018. doi: 10.1109/LRA.2018.2792536.

[180] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information Pro-
cessing Systems 32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d’Alché-
Buc, E. Fox, and R. Garnett, Eds., Curran Associates, Inc., 2019, pp. 8024–
8035.

[181] Y. Liu, J. Bernstein, M. Meister, and Y. Yue, “Learning by turning: Neural
architecture aware optimisation,” in International Conference on Machine
Learning, PMLR, 2021, pp. 6748–6758.

[182] Learning Code. [Online]. Available: https://github.com/ivandariojr/
NeuralGaits (visited on 12/07/2021).

[183] X. Da and J. Grizzle, “Combining trajectory optimization, supervised ma-
chine learning, and model structure for mitigating the curse of dimen-
sionality in the control of bipedal robots,” The International Journal of
Robotics Research, vol. 38, no. 9, pp. 1063–1097, 2019. doi: 10.1177/
0278364919859425.

[184] B. Han, H. Yi, Z. Xu, X. Yang, and X. Luo, “3d-slip model based dynamic
stability strategy for legged robots with impact disturbance rejection,” Sci-
entific Reports, vol. 12, no. 1, p. 5892, 2022.

[185] J. Reher and A. D. Ames, “Control Lyapunov functions for compliant hybrid
zero dynamic walking,” preprint arXiv:2107.04241, 2021.

[186] D. Liberzon, Calculus of Variations and Optimal Control Theory: A Concise
Introduction. Princeton University Press, 2012, isbn: 978-0-691-15187-8.
doi: 10.2307/j.ctvcm4g0s. (visited on 01/31/2024).

[187] N. Csomay-Shanklin, W. D. Compton, I. D. J. Rodriguez, E. R. Ambrose, Y.
Yue, and A. D. Ames, “Robust agility via learned zero dynamics policies,” in
2024 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), IEEE, 2024, pp. 9116–9123.

https://www.youtube.com/watch?v=8TeXd0AYtpA
https://www.youtube.com/watch?v=8TeXd0AYtpA
https://doi.org/10.1109/LRA.2018.2792536
https://github.com/ivandariojr/NeuralGaits
https://github.com/ivandariojr/NeuralGaits
https://doi.org/10.1177/0278364919859425
https://doi.org/10.1177/0278364919859425
https://doi.org/10.2307/j.ctvcm4g0s

201

[188] W. D. Compton, I. D. J. Rodriguez, N. Csomay-Shanklin, Y. Yue, and A. D.
Ames, “Constructive nonlinear control of underactuated systems via zero
dynamics policies,” in 2024 IEEE 63rd Conference on Decision and Control
(CDC), 2024, pp. 8350–8357. doi: 10.1109/CDC56724.2024.10886411.

[189] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a layer
in neural networks,” in International Conference on Machine Learning,
PMLR, 2017, pp. 136–145.

[190] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dy-
namic programming,” in 2014 International Conference on Robotics and
Automation (ICRA), IEEE, 2014, pp. 1168–1175.

[191] J. Bradbury, R. Frostig, P. Hawkins, et al., “Jax: Composable transformations
of python+numpy programs,” GitHub. Note: https://github.com/google/jax,
2018.

[192] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differentiable
mpc for end-to-end planning and control,” Advances in Neural Information
Processing Systems, vol. 31, 2018.

[193] J. Deray and J. Solà, “Manif: A micro Lie theory library for state estimation
in robotics applications,” Journal of Open Source Software, vol. 5, no. 46,
p. 1371, 2020. doi: 10.21105/joss.01371.

[194] M. H. Raibert, H. B. Brown Jr, and M. Chepponis, “Experiments in bal-
ance with a 3d one-legged hopping machine,” The International Journal of
Robotics Research, vol. 3, no. 2, pp. 75–92, 1984.

[195] X. Zhong, Y. Wu, D. Wang, Q. Wang, C. Xu, and F. Gao, Generating
large convex polytopes directly on point clouds, 2020. arXiv: 2010.08744
[cs.RO]. [Online]. Available: https://arxiv.org/abs/2010.08744.

[196] S. Lloyd, “Least squares quantization in PCM,” IEEE Transactions on In-
formation Theory, vol. 28, no. 2, pp. 129–137, 1982.

[197] F. Pedregosa, G. Varoquaux, A. Gramfort, et al., “Scikit-learn: Machine
learning in Python,” Journal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.

[198] Obstacle avoidance on a 3D hopping robot, https : / / vimeo . com /
1009702220.

[199] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Mathematical Pro-
gramming Computation, vol. 12, no. 4, pp. 637–672, 2020. doi: 10.1007/
s12532-020-00179-2.

[200] A. Kirillov, E. Mintun, N. Ravi, et al., “Segment anything,” arXiv:2304.02643,
2023.

https://doi.org/10.1109/CDC56724.2024.10886411
https://doi.org/10.21105/joss.01371
https://arxiv.org/abs/2010.08744
https://arxiv.org/abs/2010.08744
https://arxiv.org/abs/2010.08744
https://vimeo.com/1009702220
https://vimeo.com/1009702220
https://doi.org/10.1007/s12532-020-00179-2
https://doi.org/10.1007/s12532-020-00179-2

202

[201] Y. Xiong, C. Zhou, X. Xiang, et al., “Efficient track anything,” preprint
arXiv:2411.18933, 2024.

[202] Y. Lipman, R. T. Q. Chen, H. Ben-Hamu, M. Nickel, and M. Le, Flow
matching for generative modeling, 2023. arXiv: 2210 . 02747 [cs.LG].
[Online]. Available: https://arxiv.org/abs/2210.02747.

[203] V. Kurtz and J. W. Burdick, “Generative predictive control: Flow match-
ing policies for dynamic and difficult-to-demonstrate tasks,” arXiv preprint
arXiv:2502.13406, 2025.

[204] V. Kurtz and J. W. Burdick, “Equality constrained diffusion for direct tra-
jectory optimization,” arXiv preprint arXiv:2410.01939, 2024.

[205] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning robust perceptive locomotion for quadrupedal robots in the wild,”
en, Science Robotics, vol. 7, no. 62, eabk2822, Jan. 2022, issn: 2470-9476.
doi: 10.1126/scirobotics.abk2822. [Online]. Available: https://
www.science.org/doi/10.1126/scirobotics.abk2822 (visited on
04/01/2024).

https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2210.02747
https://doi.org/10.1126/scirobotics.abk2822
https://www.science.org/doi/10.1126/scirobotics.abk2822
https://www.science.org/doi/10.1126/scirobotics.abk2822

203

Index

A
Adjoint (vector field), 30

B
Bézier Curves, 57

Properties, 58
Barrier Function, 23

Discrete Time, 25

C
CARE, 52
Control Barrier Function, 38
Controlled Invariance, 26
Convexity, 50
CTLE, 20

D
Diffeomorphism, 32
Differential Geometry, 30
Discrete-Time, 23
Distribution

Integrable, 31
Involutive, 31

Distribution (vector field), 30

F
Feedback Linearization, 34

Trajectory Tracking, 36
Frobenius Theorem, 31

G

Gronwall Bellman Lemma, 49

H
Hamilton Jacobi Bellman Equation,

51
HZD, 94

I
Input to State Stability, 21

Control Lyapunov Function, 38
Exponential, 21

L
Layered Control Architecture

Component, 71
Definition, 72
Interface, 72
System, 71

Lie Bracket, 30
Lie Euler, 29
Lie Group, 26

SO(n), 27
S3, 28
Integrator, 29

Linearization, 17
LQR, 52
Lyapunov Theory, 18

Classical Definitions, 18
Control Lyapunov Functions, 36
Converse Result, 20

204

Discrete Time, 24
Modern Definition, 20

M
Manifolds, 25
Matrix Exponential, 17

O
Optimal Control, 51
Optimization, 49

Convex Programs, 50
Lagrange Dual, 50

P
PD, 77

on a Lie Group, 80
Phasing Variable, 79
Projection to State Safety, 39

Q
Quaternions, 28

R
Relative Degree, 34

Robotic Systems, 39
Continuous Dynamics, 39
Discrete Dynamics, 40
Hybrid Dynamics, 41
Underactuation, 47

S
Safety, 22
Stability, 16

Discrete Time, 24

T
Tangent Space, 25
Trajectory Optimization

Direct Multiple Shooting, 55
Direct Single Shooting, 54
Indirect Methods, 53
Line Search, 57

U
Underactuation, 42

Z
Zero Dynamics, 46

	Acknowledgements
	Abstract
	Published Content and Contributions
	Relevant Published Video Content
	Table of Contents
	Nomenclature
	Introduction
	Motivation of Layered Architectures
	From Nature to Engineering, Layered Architectures are Universal
	The Pros and Cons of Layered Architectures
	Legged Robots as A Case Study for Layered Architectures
	Legged Robot Introduction

	A Gentle Mathematical Introduction
	Nonlinear Dynamics
	Nonlinear Control
	Robotic Systems
	Underactuated Systems
	Optimization
	Bézier Curves

	Philosophy of Layered Architectures
	Problem Description
	The Pitfalls of Purely Tracking Layers
	The Pitfalls of Purely Planning Layers
	Hierarchical Solutions
	Layered Control Architecture Definition
	Specialization to Robotic Path Planning

	Low Level Tracking Layer
	PD Control
	Data-Driven Performance via Preference Based Learning
	Data-Driven Safety
	Summary

	Low Level Planning Layer
	Offline Trajectory Generation
	Whole Body Model Predictive Control
	Model Predictive Control on Manifolds
	Learning Walking Behaviors by Enforcing Set Invariance
	Zero Dynamics Policies
	Summary

	High Level Tracking Layer
	Bézier MPC
	Bézier Reachable Polytopes
	Summary

	High Level Planning Layer
	Kinodynamic Bézier Graphs
	Nonconvex Path Planning in Real Time
	Summary

	The Complete Architecture
	Theory
	Experiment
	Summary

	Conclusion
	Summary of Thesis
	Future Work
	Advice to Younger Students

	Bibliography
	Index

